YAMAHA'LSI

S3527

MSX System (MSX Port Controller and Software Controlled Sound Generator)

■概 要

YAMAHA S 3527は、 MSXコンピュータ用に開発されたLSIであり、 MSX仕様に基 づき拡張性を考えたメモリーコントロール、VDP、キーボード、プリンタ等の周辺装置 の制御を行うと共にSSGを内蔵していますので楽音信号を発生することが出来ます。

■特

- ROM(MSX BASIC ROM:32Kbyte)のアクセス
- RAM(D-RAM:16K-16Kbyte スは拡張時64Kbyte) のアクセス
- VDPのアクセス
- 基本スロットの制御
- 拡張スロットの選択とその制御
- Mlサイクル時の1WAITの挿入
- キーボードのアクセス (10キー駆動可能)
- 2系列ジョイスティック (又は汎用ポート) の内蔵
- SSG (YAMAHA YM-2149相当) の内蔵

発音域:8オクターブ

発音系列: 3系列矩形波と1系列ノイズ エンベロープコントロール:5ピット DAコンバータ

: 5ピット

- SiゲートによるCMOS構成
- +5v単一電源
- 100ピン、プラスチック、フラット、パッケージ

- ヤマハ株式会社 -

S 3527カタログ CATALOG No.: LSI-1135272 1990.06

Scanned, ocr'ed and converted to pdf by HansO,2001

■端子配置図

ブロックダイアグラム

 $(\text{CONT}): \overline{\text{M1. RFSH. MREQ. IORQ. RD. WR} } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. CS12. SLT1. SLT2. SLT3 30. SLT01 31. SLT03 33. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. CS12. SLT1. SLT2. SLT3 30. SLT01 31. SLT03 33. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. CS12. SLT1. SLT2. SLT3 30. SLT01 31. SLT03 33. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. CS12. SLT1. SLT2. SLT3 30. SLT01 31. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. CS12. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. CS12. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. CS12. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. CS12. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. CS12. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. CS12. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. CS12. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS1. CS2. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. CAS2 E. WE. CS3. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. RAS. MPX. CAS3. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{\text{ROMCS. MPX. MPX. CAS3. } \\ (\text{MEMORY CONTROL OUT PUT}): \overline{$

(PORT I): FWD1, FWD2, BACK1, BACK2, LEFT1, LEFT2, RIGHT1, RIGHT2. (TRGA1, TRGA2, TRGB1, TRGB2) () $(2.47 \pm 8.40\%)$ (PORT O): (TRGA1, TRGA2, TRGB1, TRGB2) STB1, STB2

■端子機能

端子名	入出力	· · · · · · · · · · · · · · · · · · ·
(AB15, AB14 (AB7 - AB3 ABI, AB0	i	Z80ACPUのアドレスバス入力(9ビット)
DB 7 ~ DB0	i o	Z80ACPUのデータバス入出力 (8ビット)
MI	i	Z80ACPUのMI入力
RFSH	i	Z80ACPUのRFSH入力
MREQ	i	Z80ACPUのMREQ入力
ĪŌRŌ	i	Z80ACPUの IORQ 入力
RD	i	Z80ACPUのRD入力
WR	i	Z80ACPUのWR入力
WAIT	0	M1サイクルでの1WAIT要求信号出力(外部WAIT信号とワイヤード論理可)
ROMCS	0	MSX BASIC ROMのセレクト信号出力
MPX	o	D-RAMアドレスのマルチプレックス信号出力
RAS	0	D-RAMのRAS信号出力(Z80によるRASオンリーリフレッシュ機能有)
CAS2 E,CAS3	0	D-RAMのCAS信号出力 { CAS3 : SLOT=0 C000~FFFF or SLOT=00 C000~FFFF CAS2 E: SLOT=0 8000~BFFF or SLOT=00 8000~BFFF or SLOT=32 0000~FFFF or SLOT=32 0000~FFFF }
WE	0	D-RAMのWE信号出力
CS1,CS2,CS12	o	ROMセレクト信号出力(CSI:4000-7FFF CS2:8000-BFFF CS12:4000-BFFF)
SLT1,SLT2,SLT3 30	0	スロットセレクト信号出力 (SLT1:SLOT=1 SLT2:SLOT=2 SLT3 30:SLOT=3 or
SLT01 31	o	SLOT = 30) 拡張スロットSLOT = 01スはSLOT = 31のセレクト信号出力
SLT03 33	o	拡張スロットSLOT=03スはSLOT=33のセレクト信号出力
RSEL	i	拡張スロットセレクトレジスタのコントロール信号入力
VDPCR	o	VDP (Video Display Processor) のリードタイミング信号出力
VDPCW	o	VDPのライトタイミング信号出力
PDB7~PDB0	o	プリントデータ出力 (8ピット)
PSTB	0	プリンタストローブ出力

端子名	入出力	機 能
BUSY	i	ブリンタステータス入力
$\overline{X7} \sim \overline{X0}$	i	キーボードリターン信号入力(8 ピット)($\overline{ ext{X6}}.\overline{ ext{X7}}$ はリセット時機能選択用入力になります)
<u>¥9</u> ~ <u>¥0,(¥10</u> , <u>\$K)</u>	o(o i)	キーボードスキャン信号出力(Π ビット) $\left(rac{\overline{\mathrm{Y10}}}{\mathrm{SK}}$ はリセット時の機能選択によりシリアル $+-$ 入力端子になります。
FWD1,FWD2	i	ジョイスティックFWD信号スは汎用ポートの入力
BACK1,BACK2	i	ジョイスティックBACK信号又は汎用ポートの入力
LEFT1,LEFT2	i	ジョイスティックLEFT信号スは汎用ポートの入力
RIGHT1.RIGHT2	i	ジョイスティックRIGHT信号又は汎用ポートの入力
TRGA1,TRGA2	i o	ジョイスティックTRGA信号又は汎用ポートの出力(ワイヤード論理によるi o)
TRGB1.TRGB2	i o	ジョイスティックTRGB信号又は汎用ポートの出力(ワイヤード論理によるi o)
STB1.STB2	o	汎用ポートの出力
СМІ	i	カセットテープのリード信号入力
СМО	o	カセットテープえの書き込み信号出力
REM	o	カセットコントロール信号出力
CAPS	o	CAPSランプ信号出力(直接LED点灯可)
KANA	o	カナランプ信号出力(直接LED点灯可)
JIS 50	i	キーボードの配列コントロール入力
RSTI	i	初期値設定信号入力 (シュミット入力)
RSTO	o	初期值設定信号出力
PPISND	0	ソフトによるサウンド出力
SSGSND	o	SSGによるアナログサウンド出力
φIN	i	クロック入力。(Z80A以外のクロックはこの信号をバッファーを介して使う。)
ø OUT	0	Z80ACPU用クロック出力
VDD		+ 5V 電源
vss		OV GND
VSS▼		OV SSG GND

機能説明

>機能の選択と初期設定

初期値設定信号入力時キーボードリターン信号入力端子の内 $\overline{X6}$, $\overline{X7}$ を用いて拡張スロットの選択と、テンキー用駆動出力($\overline{Y10}$ / \overline{SK})をシリアルキーボード信号入力に設定することが可能です。これは下図の回路例の様に初期値設定出力端子(\overline{RSTO})とキーリターン信号入力端子間のダイオードD1、D2の有無により下表に示す様にその機能が決められます。このときのメモリーマップと拡張状態との関係は次のページに示す図の様になります。

初期値設定時のX6, X7入力レベルと機能表

<u>X 6</u>	X 7	機能	タイオード
0	×	スロット0の拡張が可能になります	D1 有
1	×	スロット3の拡張が可能になります	D1 なし
×	0	シリアルキー回路が働きます	D2 有
×	1	テンキー駆動出力回路が働きます	D2 なし

機能選択回路例

初期値設定のために \overline{RSTI} 端子に加えられる信号は電源電圧を検出して機能する方法の他、下図の様に \overline{RSTI} 端子にコンデーサーを接続するのみで働きます。

RSTI 信号は電源が充分に立上りクロックが加えられた状態で最低、クロック周期の20倍の時間*0"レベルを保つ様にすればリセットされます。

メモリマップと拡張状態との関係図

〈拡張しない場合〉

〈SLOT#3を拡張した場合〉

〈SLOT#Oを拡張した場合〉

>メモリーコントロール信号

CPUからのシステムコントロール信号($\overline{\text{M1.RFSH.MERQ.IORQ.RD.WR}}$)とメモリーコントロール出力信号($\overline{\text{ROMCS.RAS.MPX.CAS3.CAS2}}$ E.WE.CS1.CS2.CS12.SLT1.SLT2.SLT3 30.SLT01 31.SLT0 3-33)、CPUコントロール信号($\overline{\text{WAIT}}$)、及びVDPコントロール信号($\overline{\text{VDPCR.VDPCW}}$)との論理及 びタイミングに関しては、電気的特性の項目のうちのタイミングチャート部分を参照して下さい。

>10アドレスとその機能

ブリンタ、V DP.SSG,汎用ポート、キーボード、スロット指定の各機能は下表の様にMSX仕様に基づいたizoアドレスと機能内容をもっています。

10アドレスと機能表

楼 能	i o ADR	W R	内	容
プリンタ	9 0 ^{mex}	M.	PSTB端子にプリンタストローブ出力 ((Bit 0)
	9 0	R	BUSY端子のプリンタステータス入力	(Bit 1)
	9 1	M.	PDB0~7端子にプリントデータ出力	(Bit0~7)
VDP	98	W	VDPCW端子にVDPのライトタイミン	グ信号出力
	9 9	W	} }	
	98	R	↑ VDPCR端子にVDPのリードタイミン	グ信号出力
	9 9	R]]	
SSG及び	A 0	W.	アドレスラッチ	
20 m 12 1	A 1	W	データライト	
汎用ポート	A 2	R	データリード	
キーボード及び	A 8	W.	スロット指定信号用レジスタ データラ	1 ト
- 45	A 8	R	スロット指定信号用レジスタ データリ	− ド
スロット指定	A 9	R	キーボードリターン信号リード	
	AA	W	キーボード駆動信号等のレジスタライト	
	A A	R	キーボード駆動信号等のレジスタリード	
	AB	w	モード設定	

I OアドレスのDon't Care Bit は次の様になっています。

フリンタ	AB2, AB1
V D P	AB2, AB1
S S G 及び 汎用ポート	A B2
キーボード 及び スロット指定	A B2

>キーボード及びスロット指定レジスタのビット割り当て

機 能	ピット	W/R	内容
スロット指定レジスタ	0		0000~3FFF番地のスロット指定信号
	2 3	w∕ R	4000~7FFF番地のスロット指定信号
	4 5	WZR	8000~BFFF番地のスロット指定信号
	6 7		C000~FFFF番地のスロット指定信号
キーボードリターン	0 1 2		
	3 4 5	R	
	6		
キーボード駆動等 レジスタ	0 1 2 3		$\left. \begin{array}{c} +-x- $ ド駆動信号、(この 4 ビットのテコード $0\sim 1$ 0 $\sim \overline{Y}$ $0\sim $
	4	W∠R	カセットコントロール用REM信号
	5		カセット書き込み用CMTO信号 CAPSランプ用CAP信号
1	7	1	ソフトによるサウンド用PPISND信号
モード設定	0 1 2 3 4 5 6	W	0 ビット 7 にレベル 1 を与えたときスロット指定 1 レジスタ、キーボード駆動等のレジスタは全て 0 クリアーされます。 0 これは8255AのMODE 0 でPA、PCポートを出力、PBポートを入力に設定するのと同等の機能をします。 0 の機能をします。 1
	0 1 2 3 4 5 6 7	w	Bo ビット 7 をレベル 0 としたときはキーボード駆動、等のレジスタのビットセット、リセットが出来ます。 B3 B1~B3がビットNaを表わしBoが1のときセット 0 でリセットになります。

>SSG及び汎用ポート

SSG部分は読み書き可能な14個のレジスタにより制御され(音に影響なくレジスタを読めます) 発音はこの部分の8オクタープの3系列矩形波発生器、1系列の擬似ランダムノイズ発生器、5ビットに による単発減衰、繰返し減衰等の各種のエンベロープ発生器、音量コントローラー、楽音とノイズ音を混 合するミキサー、及び5ビットのDAコンバーターにより行われます。

汎用ポート部分は読み書き可能なレジスタを介しての出力ポートと入力ポート部よりなります。

レジスタアレー

8ビットのアドレスデータのうち上位のDB7~DB4が、0(H)のとき下位のDB3~DB0の4ビットが15個のレジスタの選択をします。そして一度取込んだアドレスデータは次のアドレスを取込むまで保持されデータのライト、リード等による影響を受けません。

レジスタアレーの内容を下表に示します。

レジスタアレー表

レジスタ	アドレス (H)	機能 ビット	B7 B6 B5 B4 B3 B2 B1 B0
R ₀	0 0	★	8ビットトーン微調整
R ₁	0 1	チャンネルAの周波数	4 ピットトーン組調整
R ₂	0 2	チャンネルBの周波数	8 ピットトーン微調整
R ₃	0 3	アヤンイルロの同収数	4 ピットトーン組調整
R ₄	0 4	チャンネルCの周波数	8 ビットトーン微調整
R 5	0 5	テヤンイルしの間収収	4 ピットトーン組調整
R ₆	0 6	ノイズ周波数	5ピットノイズ周波数
R 7	0.7	ミキサー、汎用ポート	ポート・ ノイズ トーン
K7	0 7	の設定	"1""0" C B A C B A
R a	0 8	チャンネルAの音量	M L3 L2 L1 L0
R 9	0 9	チャンネルBの音量	M L3 L2 L1 L0
R A	0 A	チャンネルCの音量	M L3 L2 L1 L0
Rв	0 B	エンベロープの周波数	8ピット徴調整
Rс	0 C	エン・ヘローデジカの仮数	8 ヂット粗調整
Rь	0 D	エンベローブの形状	CONT ATT ALT HOLD
$\geq <$	0 E	汎用入力ポートのデータ	─ 汎用ポートピット割り当て表参照 ──
RF	0 F	汎用出力ポートのデータ	70万年 ドビッド制り引き収多無

^{*}レジスタR7のポート部分は常に表に示すレベルとして下さい。

汎用ポート

入力ホートはアドレス 0 E(H), 出力ホートはアドレス 0 F(H) で働く出力ボートデータ保持用 レジスタ R Fによって制御され ます。各ビットと入出力端子関 係は右の汎用ポートビット割り 当て表の様になります。

汎用ポートビット割り当て表

ポート	ビット	i/o	接続される端子名
入力	B 0 B 1 B 2 B 3 B 4 B 5	i	F WD1 or FWD2 BACK1 or BACK2 LEFT1 or LEFT2 RIGHT1 or RIGHT2 TRGA1 or TRGA2 TRGB1 or TRGB2
	B 6 B 7		JIS ∕ 50 たときFWD2側 CMI が入力されます。
出力	B 0 B 1 B 2 B 3 B 4 B 5 B 6 B 7	o	TRGA1 TRGB1 TRGA2 TRGB2 STB1 STB2 入力ポートB0~B5の入力セレクト(外部に出力されない) KANA

楽音周波数の設定 (レジスタR₀~R₅で制御)

チャンネル A. B. Cの 3 系列の楽音発生器で作られる矩形波の周波数はレジスタ $R_0 \sim R_5$ によって設定されます。 R_0 、 R_1 がチャンネル A を、 R_2 、 R_3 がチャンネル B を、 R_4 R_5 がチャンネル C をそれぞれ制御します。発振周波数 F_T はレジスタの値 T P (10進) から次の様に決められます。但しこのとき F_2 はクロック周波数です。

$$F_T = \frac{F \phi}{32TP}$$

トーン組調整レジスタ
$$\begin{pmatrix} R_1 \\ R_3 \\ R_5 \end{pmatrix}$$
 $\begin{pmatrix} A \\ B \\ C \end{pmatrix}$ トーン微調整レジスタ $\begin{pmatrix} R_0 \\ R_2 \\ R_4 \end{pmatrix}$

I2ビットの発振周波数設定値(TP)

ノイズ周波数の設定 (レジスタR6で制御)

ノイズ音源の周波数F×はレジスタの値NP (10進) から次のように決められます。

Føはクロック周波数

$$F_N = \frac{F \phi}{32N P}$$

ノイズ周波数レジスタ R6

5 ビットのノイズ周波数設定値(NP)

ミキサーの設定(レジスタR7で制御)

ミキサーは楽音とノイズ音の混合をしますが、その混合を決めるのがレジスタ R_7 のビット B_5 ~ B_0 です。レジスタに0 が書き込まれていれば音が出力されます。従ってノイズと楽音が 共に0 と書き込まれていれば混合されて出力し、どちらかだけが0 ならば、0 の方の音が出力し、両方共に1 が書き込まれていれば共に出力しません。

常にこの様 に設定する。

ノイズ、トーンは 0 で出力可能になります。

音量コントロール (レジスタR8~RAで制御)

チャンネルA、B、Cの音量はレジスタR8~RAで制御されます。モードMは固定音量(M=0)にするか、可変音量(M=1)にするかの選択をします。M=0のときは、4 ビットのレベル選択信号 $L_3L_2L_1L_0$ で16通りのレベルから1つを選んで発音します。音量を変えたい時は $L_3L_2L_1L_0$ を変化させます。M=1のときは内蔵のエレベロープ発生器で作られる $E_4E_3E_2E_1E_0$ の5 ビットの信号によって音量が決められて発音します。このとき $E_4E_3E_2E_1E_0$ は時間と共に変化しますので可変音量になります。

エンベロープ周波数の設定(レジスタRB, Rcで制御)

エンベロープの繰り返し間波数 F_E は、エンベロープ周期設定値 E_P (10進) から次の様に決められます。 F_{ϕ} はクロック周波数です。

$$F_E = \frac{F\phi}{512EP}$$

16ピットのエンベロープ周期設定値(EP)

エンベロープの形状コントロール(レジスタRDで制御)

エンベロープのレベルは $E_4E_3E_2E_1E_0$ の 5 ビットからなるエンベロープ発生器で決まりますがエンベロープの形状はエンベロープ発生器のカウンタ値を上昇・下降させたり、 1 サイクルで止めたり繰り返しをさせたりして作られます。この形状の制御はレジスタ R_D のビット B_3 \sim B_0 によって行なわれます。

エンベローブの形状制御信号

CONT.ATT.ALT.HOLDによりエンベロープは次表の様な各種形状をとります。

エンベロープ形状表

エンベローブ形状	\mathbf{B}_0	Βı	B ₂	Ba
27 · \ 1 · · · / 1/24 \	HOLD	ALT	ATT	ONT
	×	×	0	0
	×	×	1	0
	0	0	0	1
	1	0	0	1
	0	1	0	1
	. 1	1	0	1
	. 0	0	1	1
	. 1	0	1	1
	0	1	1	1
	1	1	1	1 .

DAコンバータ

DAコンバータは最大振巾を1Vに正規化した時に下図に示す様な出力に変換します。 これは直線対数変換になっていて、広いダイナミックレンジを持ち、自然な減衰感が得られます。

図1 D-Aコンパーターの出力レベル 図中左半分の添字は固定音量の選択信号L.L. L.L. を10進表示したもので、右半分の添字は エンベローフカウンターの出力E.E.E.E.E. E. 10進表示したものです。

32 エンベロープ(R_D=××××1110)を付与した単音の出力波形

図 3 | 固定音量(R₈~R_A = ×××01100) のときの 3 音ミキシングの出力波 形

>シリアルキー入力

初期値設定時シリアルキー入力が機能する様に設定したならば $\overline{
m V10}/\overline{
m SK}$ 端子から下記の仕様に基づ くシリアルデータを内部でキーリターン信号にORで足し込むことが出来ます。

							,							
B 15	B 14	В 13	B 12	Він	B 10	В 9	Ва	В 7	В 6	B 5	B 4 B 3	B 2	В	Во

 $\overline{Y10}/\overline{SK}$ 端子に入力するシリアル信号はクロック周波数に対し 非同期でも可能であります。波形及びタイミングは図と表にしたがっ て下さい。そして、入力される信号の負極性のパルス間隔が"0"又は "1"のレベルを示します。上図の例では1番目は"0"、2番目は"1"、 …16番目には"1"が入力された状態です。これらはB15~B0で 表わされる16ピットのシリアルデータ用レジスタにストアされます。 Fø:クロック周波数 このとき続けて17番目の入力あればそれはビット Boに入力されビッ トBoのデータはビットB1に…ビットB14のデータはビットB15にシ

フトしピットB15のデータはすてられます。

ンリアル国内のアイマンス							
記号	MIN	MAX					
T w	265 F Ø						
То		2040 F Ø					
Т 1	2056 F Ø						
T 0 - T w							

シリアル入力が終了したならば、キーボード及びスロット指定レジスタのビット割り当て表に示すキ ーポード駆動レジスタのピット 0、 1 状態を定めることにより次表の様にキーポードリターン信号と 同様に8ピット単位にセレクトし読み込みを行い、そしてシリアルデータ用の16ピットレジスタをク リアします。

シリアルデータの読み込みとそのレジスタクリアー表

キーホー	ド駆動ビット	内	容
Во	Ві	rı	₽
0	0	Bo-Bo/キーボードリターン信号と	用じi/oアドレスで読み込まれます。
0	1	B8-B15/B0, B8がキーボードリタ	ーンのXo側に対応します。
1	×	シリアルデータ用16ビットレジスタのク	リアー

この16ビットレジスタのクリアは上表の様にビット B_0 をレベル1にすることで行われますのでこのときビット $B_1 \sim B_3$ をある値に定めることによりキーボード駆動出力端子の $\overline{Y_1}$ 、 $\overline{Y_3}$ 、 $\overline{Y_5}$ 、 $\overline{Y_5}$ 、 $\overline{Y_5}$ 、 $\overline{Y_5}$ のい、ずれかに16ビットレジスタクリアと同時に出力を得ることが出来ます。この出力信号を次のシリアルデーターの送り出し用とすることが可能です。

- 注意 1) このシリアルデータに対してはMSXはサポートしていません。
 - 2) シリアルデータをcpuが読み込む時キーボードリターン信号が同時に入力されると結果は両方のOR論理をとったものとなります。

基本回路例(本デバイスと周辺回路との接続)

基本回路例(メモリコントロール部分 スロットの拡張をしない場合)

D・RAM を8000 – BFFF に実装し $\overline{\text{CA 2 E}}$ を用いる場合は、SLOT = O の拡張が可能な状態にして下さい。

基本回路例(メモリーコントロール部分,RAM64Kbyte,スロット=0を拡張した場合)

* S3527に入力されていないアドレスピットすべてのNAND論理をとった信号を入力する。

基本回路例(メモリーコントロール部分,RAM16K+64Kbyte.スロットコ3を拡張した場合)

*S3527に入力されていないアドレスピットすべてのNAND論理をとった信号を入力する。

電気的特性

1. 絶対最大定格

म्([]	定格値	単位
電源電圧 (V DD)	-0.3~7.0	1.
入力端子電圧	$-0.3 - V_{DD} + 0.3$	1.
動作問用温度	0 ~70	°C
保存温度	-50~125	°C

2. 推奨動作条件

項目		記号	最小	標準	最大	単位
電源電圧		L, DD	4.75	5.0	5.25	V.
	:	V_{SS}	0	0	0	V

3. 直流特性 (Top= 0 C~70°C, V_{DD}=4.75v~5.25v, V_{SS}=OV, V_{SS}=OV)

項目	記号	条 件	最小	標準	最大	単位
低レベル入力電圧	V _{IL1}	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-0.3		0.8	1.
!	$V_{\rm 1L2}$	$(\overline{X7} \sim \overline{X0})$	-0.3		1.5	1.
高レベル入力電圧	$V_{\rm IH1}$	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2.0		$_{ m c}$ V $_{ m DD}$	1.
	$V_{\rm HH2}$	$(\overline{X7} \sim \overline{X0})$	3.5		L^{DD}	1.
低レベル出力電圧	Volu	注0)	0	 	0.45	1.
	$\rm V_{OL2}$	$I_{OL} = 10 \text{ mA} (\overline{PSTB.WAIT.CAPS})$	0	1	0.45	Λ.
高レベル出力電圧	V _{OH}	注O) KANA)	4.0		$V_{\rm DD}$	V
			į l		i İ	
入力電流	I ı	$V_{IN}=0$ V	- 50		- 500	μA
入力リーク電流	I LI	$V_{\rm IN}=0$ ~5 $^{\rm V}$			10	$\mu \mathbf{A}$
出力リーク電流	ILO	$V_0 = 0 \sim 5^{-1}$			10	μA
電源電流	I DD				35	m A

 $(\pm O) : IOL = 1 \text{ mA} \qquad CMO. \text{REM. PPISND. } \overrightarrow{VDPCR. VDPCW...} \neq OUT. \overrightarrow{RUMCS. RAS. CAS3. CAS2 E. WE. TRGA1. } \overrightarrow{TRGB1. STB1.} \\ \qquad TRGA2. TRGB2. STB2. \overrightarrow{Y10} / \overrightarrow{SK.} \overrightarrow{Y0} - \overrightarrow{Y9}$

IOL=2.4mA DB0~DB7, SLT01/31, SLT03/33, CS1, CS2, CS12, SLT2, SLT3/30, PDB0-PDB7, RSTO, MPX (門してRGA1, TRGA2, STB1, TRGA2, TRGB2, STB2) は IOL=1.6 mA のとき VOL & ホーの5V となります。

IOH = -0.2mA (OPEN DRAINをのぞく出力端子)

4. 交流特性 注1)

クロックタイミング

1((11	iiL	냥	条件	最小	68 (t)	最大	単 位
クロック問期		Tc				280		ns
クロック(入力)のご	ርኩህ, ፙኑህ	T str. 1	C 5 If				30	ns
クロック(入力)、(引	5力)の遅延時間	T . 1	5 O			13		ns
クロック(出力)の立	(上), 近下)	T : or.	T ± of	CL ~- 70PF			30	ns

ライトタイミング

τÜ		٦Ľ	1 }:	条	(1:	最小	最大	单位
テータのWRオフ	こ先立つ確定時間	Tv	VR S			300		ns
テータのWRオファ	からの保持時間	Tw	VR II			0		ns
出力テータの遅延	#\$(f)	TD	D	(1: 2)			250	ns

リードタイミング

711	П	il.	<i>1)</i> -	条	件	lik ds	最大	单位
モータ選延時		ΤR	D D				250	ns
フロート状態への			DF				100	ns
人力テータの R D			Бs	1		0		ns
入力テークのRD	に対する保持時間	T_R	DΗ	} (E 3)		0		ns

注1) 各タイミング特性はCPUのアドレスバス、データバス、コントロール信号とを直轄したときを条件とします。

注2)端子 $\overline{Y_0} \sim \overline{Y_{10}}$ 、STBI, STB, TRGAI, TRGA2, TRGBI, TRGB2, \overline{CAPS} , \overline{KANA} , REM, CMO の信号に適用

注 3)端子 $\overline{X_0} \sim \overline{X_7}$, FWD1, FWD2, BACK1, BACK2, LEFT1, LEFT2, RIGHT1, RIGHT2, TRGA1, TRGA2,

TRGB1, TRGB2, CMI, JIS 50 の信号に適用

M 1 サイクル、MEMORY READ WRITE サイクル、I O サイクルタイミング

TII .		11	al 号	条 件	最小	最大	単位
CLOCK * WAIT	÷	遅延時間	$\overline{AW} \in T$	$C_L = 70 PF$		60	ns
CLOCK * - WAIT	•	"	T∵wa	CL=70PF RL=680 9	2	60	ns
$\overline{\text{MREQ}}$, $-\overline{\text{RAS}}$	÷	"	TMRRA	$C_L = 100PF$		60	ns
$\overline{\text{MREQ}} \uparrow - \overline{\text{RAS}}$	•	"	TMRRA	"		70	ns
CLOCK $-\overline{RAS}$		n	T : RA	"		70	ns
CLOCK RAS	•	n	T 3 RA	n n	90	180	ns
CLOCK † - MPX	•	"	T & MX	"		. 70	ns
$\overline{\text{MREQ}} ^{\bullet} - \overline{\text{MPX}}$		"	TMRMX	"		70	ns
$\overline{RAS} \rightarrow MPX$?	"	TRAMA	"	50		ns
CLOCK ^ -*CASn	1	"	Teca	"		70	ns
MREQ * -*CASn	1	"	TMRCA	,,		70	ns
CLOCK $^{\bullet} - \overline{WE}$	Ť	"	T # WE	"	30	70	ns
CLOCK $-\overline{WE}$	¥	"	T : WE	"	30	70	ns
$\overline{\text{MREQ}} \downarrow - \overline{\text{ROMCS}}$	÷	"	TMRRO	"		70	ns
MREQ ^ - ROMCS	•	"	TMRRO	,,		70	ns
MREQ*CSn	÷	"	TMRCS	"		60	ns
MREQ ↑ -*CSn	•	"	TMRCS	,,		70	ns
$\overline{\text{MREQ}} \cdot - \overline{\text{SLTn}}$:	"	TMRSL	,,		60	ns
MREQ *-*SLTn	•	"	TMRSL	,,		70	ns
MREQ*SLTnn	÷	"	$T\overline{MRST}$	"		70	ns
MREQ*SLTnn	î	"	TMRST	"		70	ns
RD VDPCR	į	,,	TROVR	"	İ	70	ns
RD * - VDPCR	ţ	"	T_{RDVR}	"		70	ns
WR - VDPCW	1	,,	$T\overline{w_R}\overline{vw}$	"		70	ns
WR '- VDPCW	†	"	Twrvw	,,		50	ns

*:注4) 参照

タイミング測定負荷回路

アナログ出力 (SSGSND)

項	目 記号	条件	最小	標 準	最大	単位
最大出力電	圧 VOA	下図参照	0.23	0.33	0.47	V _{PP}

SSGSND 出力電圧測定時のレジスタの状態

楽音周波数設定レジスタ:OFF (≃440 H z) 音量コントロールレジスタ:OF (最大音量) ミキサレジスタ:A, B, C チャンネル単独出力

クロックタイミング

M1サイクルタイミング

注4)*印信号名は詳しくは下記の様になります。

 $\begin{array}{c|c} \hline CASn & : \overline{CAS\,2/E}, \overline{CAS\,3} \\ \hline \hline CSn & : \overline{CS1}, \overline{CS\,2}, \overline{CS12} \\ \hline SLTn & : \overline{SLT1}, \overline{SLT2}, \overline{SLT\,3/30} \\ \hline SLTnn & : \overline{SLT01/31}, \overline{SLT03/33} \\ \hline \end{array}$

MEMORY READ WRITE サイクルタイミング

*:注4) 参照

□ 0 サイクルタイミング

外形寸法図

