## YAMAHAKisi

## 53527

MSX System（MSX Port Controller and Software Controlled Sound Generator）

## ■概 要

YAMAHA S 3527生，MSXコンビュータ用に開発きれたLSIであり，MSX仕様に基
つき拡張性を考えたメモリーコントロール，VDP，キーボート，ブリンタ等の周辺装謓
の制御を行うと共にSSGを内蔵していますので楽音信号を発生することが出来ます。

特 徵
－ROM（MSX BASIC ROM：32Kbyte）のアクセス
－RAM（D－RAM：16K－16Kbyte ス！$\ddagger$ 桩張時 64 Kbyte）クアクセス
－VDPのアクセス

- 基本スロットの制御
- 拡張スロットの罢択とミの制御
- M1サイクル時の1WAITの掩え
- キーホードクアクセス（ 10 キ一駆動可能）
- 2 采列ジョイスティック（ス！主汎用ボート）つ内藏
- SSG（YAMAHA YM1－2149相当）の内藏

発音域：8オクターフ
発音系列： 3 吾列朴形波上 1 予列ノイス
エンペロープコントロール：5ビット
DAコンパータ ：5ビット

- SiゲートによるCMOS棬成
- ＋5 V単一西源
－100ビン，ブラスチック，フラット，パッケージ

Scanned，ocr＇ed and converted to pdf by HansO，2001

## 端子配置図



ブロックダイアグラム

（CONT）：$\overline{\mathrm{MI}} . \overline{\mathrm{RFSH}} . \overline{\mathrm{MREQ}} \cdot \overline{\mathrm{IORQ}} \cdot \overline{\mathrm{RD}} \cdot \overline{\mathrm{WR}}$

 （PORT 0）：（TR（GAI．TRGA？．TRGBI．TRGB2）STB1．STB2

## －端子機能

| 端子名 | 入出力 | 機 能 |
| :---: | :---: | :---: |
| $\left(\begin{array}{l} A B\|5, A B\| 4 \\ A B 7 \\ A B \mid, A B 3 \end{array}\right)$ | i | Z80ACPUのアドレスバス入力（9ビット） |
| DB 7 －DB0 | io | 280ACPUのデータバス入出力（8ビット） |
| $\overline{\mathrm{MI}}$ | i | 280ACPUの $\overline{\text { M1 }}$ 人力 |
| $\overline{\text { RFSH }}$ | i | Z80ACPUの $\overline{\mathrm{RFSH}}$ 入力 |
| $\overline{\text { MREQ }}$ | i | Z80ACPU力 $\overline{\mathrm{IREQ}}$ 入力 |
| IORQ | i | Z80ACPUの $\overline{\text { IORQ }}$ 入力 |
| $\overline{R D}$ | i | Z80ACPUл $\overline{\mathrm{RD}}$ 入力 |
| $\overline{W R}$ | i | 280ACPUの $\overline{\mathrm{VR}}$ 入力 |
| WAIT | － | MlサイクルでのlWAIT要求信号出力（外部WAIT信号こワイヤード論理可） |
| ROMCS | 0 | MSX BASIC ROMのセレクト信号出力 |
| MPX | 0 | D－RAMアトレスのマルチブレックス信号出力 |
| $\overline{\text { RAS }}$ | 0 | D．RAMの $\overline{\mathrm{RAS}}$ 信号出力（Z80：こちるRASホンリーリフレ ${ }^{\text {a }}$（ |
| $\overline{\text { CAS2 E，CAS3 }}$ | 0 |  |
| WE | － | D．RAMの $\overline{\mathrm{VEE}}$ 信号出力 |
| $\overline{\mathrm{CS1}}, \overline{\mathrm{CS} 2}, \mathrm{CS} 12$ | 0 |  |
| $\overline{\text { SLT1 }}$ ，$\overline{S L T T} 2, \overline{S L T 3 ~} 30$ | 0 | スロットセレクト信号出力（ $\overline{\text { SLT }}$ ：SLOT $=1 \overline{\text { SLT2 }}$ ：SLOT $=2$（ $\overline{\text { SLT3 30 }}$ ：SLOT $=3$ or SLOT $=30$ ） |
| SLTO1 31 | 0 | 拡張スロットLOT $=01$ ス！${ }^{\text {a }}$ SLOT $=31$ のセレクト信号出力 |
| $\overline{\text { SLT03 } 33}$ | 0 | 应張スロッSLOT＝03又！${ }^{\text {a }}$ SLOT $=33$ のセレクト信号出力 |
| RSEL | i | 拡張スロットセレクトレジスタのコントロール信号入力 |
| $\overline{\text { VDPCR }}$ | 0 | VDP（Video Display Processor）のリードタイミング信号出力 |
| VDPCW | 0 | VDPのライトタイミング信号出力 |
| PDB7－PDB0 | 0 | プリントデータ出カ（8ピット） |
| $\overline{\text { PSTB }}$ | 0 | ブリンタストローブ出カ |


| 端子名 | 入出カ | 機 能 |
| :---: | :---: | :---: |
| BUSY | i | プリンタステータスス力 |
| $\overline{X 7}-\overline{x 0}$ | i |  |
| $\overline{Y 9} \sim \overline{Y O}(\overline{Y 10} \cdot \overline{S K})$ | o（0 i） |  |
| FWD1，FWD2 | i | ショイスティックFD信号ス！沉用ボートの入カ |
| BACK1，BACK2 | i | ショイスティックBACK信号スは汎用ポートの入力 |
| LEFT1，LEFT2 | i | ショイスティックLEFT信号スは汎用ボートの入力 |
| RIGHT1．RIGHT2 | i | ショィスティックRIGHT信号スは汎用ボートの入力 |
| TRGA1，TRGA2 | io | ショイスティックTRGA信号スは汎用ボートの出力（ワイヤージ誨理ここよるio） |
| TRGE1．TRGB2 | 10 |  |
| STB1．STB2 | － | 汎用ボートの出力 |
| CMI | i | カセットテーブカリード信号え力 |
| CMO | 0 | カセットテーブえの書き込み信号出力 |
| REM | 0 | カセットコントロール信号出力 |
| $\overline{\text { CAPS }}$ | 0 | CAPSランブ信号出力（直接LED点灯可） |
| $\overline{\text { KANA }}$ | 0 | カナランブ信号出力（直接LED点奵可） |
| JIS 50 | i | キーホート゚配列コントロール入カ |
| $\overline{\mathrm{RSTI}}$ | i | 初期値設定信号入力（シュミット入力） |
| $\overline{\mathrm{RSTO}}$ | 0 | 初期値設定信号出力 |
| PPISND | 0 | ソフトによるサウンド出カ |
| SSGSND | 0 | SSGによるアナロケサウンド出力 |
| $\phi I N$ | i | クロック入力。（Z80A以外のクロッグ土この信号をバッファーを介゙心こ使う。） |
| ¢ OUT | 0 | Z80ACPU用クロック出力 |
| VDD |  | +5 V 電源 |
| vSS |  | OV GND |
| VSS V |  | OV SSG GND |

## 機能説明

## $>$ 機能の選択と初期設定

初期値設定信号入力時キーボートリリーン信号え力端子の内気6，X7を用いて拡張スロットの選択上，テ ンキー用駆動出力（ $\overline{\mathrm{Y} 10}$ ，$\overline{\mathrm{SK}}$ ）をシリアルキーボード信号え力に設定することが可能です。これは下図 の回路例の様に初期値設定出力端子（ $\overline{\mathrm{RSTO}}$ ）とキーリターン信号入力端子間のタイオードD1．D 2 の有無により下表に示す様にミの機能が決められます：このときのメモリーマッブと㧒張状態との関係は次の ベージに示さ図の様になります。


| $\overline{\mathrm{X} 6}$ | $\overline{\mathrm{X} 7}$ | 機 | タイオード |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $\times$ | スロット0の拉張が可能こなります | D 1 | 有 |
| 1 | $\times$ | スロット3の拉張が可能：こなります | D 1 | なし |
| $\times$ | 0 | シリアルキー回路が働きます | D 2 | 有 |
| $\times$ | 1 | テンキー気動出力回路が動きます | D 2 | なし |

機能選択回路例

 $\overline{\mathrm{RSTI}}$端子にコンデーサーを接続するのみで動きます。
$\overline{\mathrm{RSTI}}$ 信号は電源が充分に立上リクロックが加えられた状態で最低，クロック周期の20倍の時間＂0＂レ ベルを保つ様にすればりセットされます。


メモリマップと拡張状態との関係図

〈拡張しない場合〉


制御謈号端子名

## 〈SLOT\＃3を拡張した場合〉

スロットの㧒張をする場台！
体デバイスに入力きれこいな
いアドレス $\mathrm{A}_{2}$ ． $\mathrm{A}_{8}$ ，A9． $\mathrm{A}_{10}$ ．
$A_{11} A_{13} A_{13}$ の NAND詒理
こった信号を $\overline{\mathrm{RSEL}}$ 端于に
入力寸る必要があります。

＞メモリーコントロール信号
CPUからのシステムコントロール信号（ $\overline{\mathrm{MI}} . \overline{\mathrm{RFSH}} . \overline{\mathrm{MERQ}} \cdot \overline{\mathrm{IORQ}} \cdot \overline{\mathrm{RD}} . \overline{\mathrm{KR}})$ 上メモリーコントロール出力信号（ $\overline{\mathrm{ROMCS}} . \overline{\mathrm{RAS}} . \mathrm{MPX} . \overline{\mathrm{CAS}} 3 . \overline{\mathrm{CAS} 2} \mathrm{E} . \overline{\mathrm{WE}} . \overline{\mathrm{CS} 1} . \overline{\mathrm{CS} 2} . \overline{\mathrm{CS} 12} . \overline{\mathrm{SLT}} . \overline{\mathrm{SLT}} 3 . \overline{\mathrm{SLT} 3} 30 . \overline{\mathrm{SLT} 01} 31 . \overline{\mathrm{SLT} 0}$
 びタイミングに関しては，電気的特性つ項目のうちのタイミンクチャート部分を参照しこ下さい。

## ＞10アドレスとその機能

ブリンタ，VDP．SSG，汎用ボート，キーボード，スロット指定の各機能っさ下表の様：こ入ISX仕様：二基ついか「ひアドレスと機能内容をもつこいます。

1 Oアドレスと機能嚢

| 機 能 | i o ADR | W R | 内 容 |
| :---: | :---: | :---: | :---: |
| ブリンタ | $\begin{array}{ll} \hline 9 & 0^{\text {ines }} \\ 9 & 0 \\ 9 & 1 \end{array}$ | $\begin{gathered} W \\ R \\ W \end{gathered}$ | PSTB端子：ニブリンタストローブ出力（（Bit 0） <br> BUSY端子のブリンタステータスヘ力（Bit 1） <br> PDB0～7端子にブリントデータ出力（Bit0～i） |
| VDP | $\begin{aligned} & 98 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \end{aligned}$ | $\begin{aligned} & W \\ & W \\ & \text { R } \\ & R \end{aligned}$ | $\left\{\begin{array}{l} \overline{\text { 「DPCW端子にVDPのライトタイミンク信号出力 }} \\ \overline{\text { VDPCR端子:こVDPのリートタイミンク信号出力 }} \end{array}\right.$ |
| SSG及び <br> 汎用ボート | $\begin{aligned} & \text { A } 0 \\ & \text { A } 1 \\ & \text { A } 2 \end{aligned}$ | $\begin{aligned} & W \\ & W \\ & R \end{aligned}$ | $\begin{aligned} & \text { アトレスラッチ } \\ & \text { データライト } \\ & \text { データリード } \end{aligned}$ |
| $\begin{aligned} & \text { キーボード及び } \\ & \text { スロット指定 } \end{aligned}$ | A 8 <br> A 8 <br> A 9 <br> A A <br> A A <br> A B | W $R$ $R$ W $R$ $R$ | スロット指定信号用レジスタデータライト スロット指定信号用レジスタデータリード キーボードリターン信号リード <br> キーボード駆動信号等のレジスタライト <br> キーボード炣動信号等のレジスタリード <br> モード設定 |

1 OアドレスクDon＇t Care Bit沫㳄の様になっこいます。

| フリンタ | AB2．AB1 |
| :---: | :---: |
| V D P | A B2，AB1 |
| S S G 及び沈用ボート | A B2 |
| キーホート及び スロット換註 | A B2 |

$>$ キーボード及びスロット指定レジスタのビット割り当て


## ＞SSG及び汎用ポート

SSG部分は読み書き可能な14個のレジスタにより制御され（音に影響なくレジスタを読めます）
笔音はこの部分の8オクターブの3采列如形波発生器，1䒺列の蘏似ランタムノイズ発生器，5ビットに
による単発減交，繰返し減衰等の各種のエンペロープ発生器，音量コントローラー，楽音とノイズ音を混
台するミキサー，及び5ビットのDAコンバーターにより行われます。
汎用ボート部分は読み書き可能なレジスタを介ンこの出力ボートと入力ボート部よりなります。

## レシスタアレー

8 ビットクアドレスデータのうち上位のDB7～DB4が，0（H）のとき下位のDB3～DB0の4ビッ トが15個のレジスタの選択をします。そして一度取込んだアドレスデータ执次のアドレスを取込むまで保持き丸データのライト，リート等による影響を受けません。

レジスタアレーの内容を下表に示します。

レジスタアレー表

| レジスタ | アドレス（H） | 機能 ビット | B7 | B6 | B 5 | $\mathrm{B}_{4}$ | $\mathrm{B}_{3}$ |  | B 1 | Bo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ro | 00 | チャンネルAの周波数 | 8 ビットトーン徵調整 |  |  |  |  |  |  |  |
| R： | 01 |  |  |  |  |  |  | ットト | ーン相貄 |  |
| $\mathrm{R}_{2}$ | 02 | チャンネルBの周波数 | 8 ビットトーン徵調整 |  |  |  |  |  |  |  |
| $\mathrm{R}_{3}$ | 03 |  |  |  |  |  | 4 ビ | ットイ | ーン相浬 |  |
| R4 | 04 | チャンネルCの周波数 | 8 ビットトーン徵調整 |  |  |  |  |  |  |  |
| R ${ }_{5}$ | 05 |  | －4ピットトーン組䛠整 |  |  |  |  |  |  |  |
| R6 | 06 | ノイス周波数 |  | － |  | 5 ビットノイズ周波数 |  |  |  |  |
| R 7 | 07 | ミキサー，沉用ボート の設定 | ボート＊ノイズ |  |  |  |  | トーン |  |  |
|  |  |  |  |  | C | B | A | C | B | A |
| R 8 | 08 | チャンネルAの音量 |  |  |  | M | $\mathrm{L}_{3}$ | $\mathrm{L}_{2}$ | $L_{1}$ | Lo |
| R 9 | 09 | チャンネルBの音量 |  |  |  | M | $\mathrm{L}_{3}$ | $\mathrm{L}_{2}$ | $\mathrm{L}_{1}$ | Lo |
| R A | 0 A | チャンネルCの音量 |  |  |  | M | $\mathrm{L}_{3}$ | $\mathrm{L}_{2}$ | $L_{1}$ | Lo |
| $\mathrm{R}_{\text {B }}$ | 0 B | エンベローブの周波数 | 8 ビット徽調整 |  |  |  |  |  |  |  |
| R c | 0 C |  | 8 ヂット粗調整 |  |  |  |  |  |  |  |
| R ${ }_{\text {d }}$ | 0 D | エンペロープの形状 |  | $\bigcirc$ |  |  | CONT | $\mathrm{AT}^{T}$ | ALT | HOLD |
| $\angle$ | 0 E | 汎用入カポートのデータ | －汎用ボートビット割り尚て良参照 |  |  |  |  |  |  |  |
| $\mathrm{RF}_{F}$ | 0 F | 沉用出力ポートのデータ |  |  |  |  |  |  |  |  |

＊レジスタR7のポート部分は常に表に示すレベルとして下きい。

## 汎用ポート

入ノホートはアドレス0E（H），
出乃ホートはアドレス0 F（H）
こ動く出力ボートデータ保持用
レジスタRFによって制御され
ます。各ビット上入出力端子関
保しさたの汎用ボートビット割り
当こ表の様になります。

汎用ボートビット部り当て表

| ポート | ビット | i／o | 接続される端子名 |
| :---: | :---: | :---: | :---: |
| 入力 | $\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{4} \\ & \mathrm{~B}_{5} \\ & \mathrm{~B}_{6} \\ & \mathrm{~B}_{7} \end{aligned}$ | i |  |
| 出力 | Bo <br> B 1 <br> B 2 <br> B 3 <br> $B_{4}$ <br> B <br> B 6 <br> B | o | TRGA1 <br> TRGB1 <br> TRGA2 <br> TRGB2 <br> STB1 <br> STB2 <br>  <br> हीत． |

## 楽音周波数の設定（レジスタRO～R 5 で制御）

チーンネルA，B，Cの3采列の楽音発生器だ作られる矩形波の周波数はレジスタRo～Rシミよっここ設定き引き丁：Ru，R1がチャンネルAを，R2，R3がチャンネルBを，Rゅ R $\mathrm{R}_{5}$ がチャンネルCをそれごかし制御

コノク周波数ごす。


12ビットの発振周波数設定值（TP）

## ノイズ周波数の設定（レジスタR6で制御）

ノイズ音源の周波数FNはレジスタの値NP（10進）から次のように決められます。
Fs：はクロック周波数

$$
F_{N}=\frac{F \phi}{32 N P}
$$

ノィズ周波数レジスタ $\mathrm{R}_{6}$

| B 7 | B6 | B 5 | B4 | B3 | $\mathrm{B}_{2}$ | B | Bo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 使用しません |  |  |  |  |  |  |  |
|  |  |  | NP4 | $\mathrm{NP}_{3}$ | $\mathrm{NP}_{2}$ | NP | NPo |

5 ビットのノイズ周波数設定値（NP）

## ミキサーの設定（レジスタR7で制御）

ミキサーは楽音とノイズ音の混台をしますが，その混合を決めるのがレジスタRッのビットB；B士。レジスタ：二0が書き込まれていれはは音が出力きれます。従つこノイズさ楽音が共に 0 こ書き込ま れこいればさ混台きれて出力し，どちらかだけが0ならじ，0の方の音が出力し，両方共に1が書き这ま れこいれで共に出力しません。


音量コントロール（レジスタRg～RAで制御）
チャンネルA，B，Cの音量はレジスタRg～RAで制御されます。モードMは图定音量（ $\mathrm{M}=0$ ） ：こするか，可変音量（ $\mathrm{M}=1$ ）にするかの選択をします。 $\mathrm{M}=0$ の上きは， 4 ビットのレベル選択信号 $L_{3} L_{2} L_{1} L_{0}$ で16通りのレベルから1つを選んで発音します。音量を変えたい時は L ${ }_{3} L_{2} L_{1} L_{0}$ を変化きせます。M＝1のときか内藏のエレベローブ発生器で作られるE4 $\mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1} \mathrm{E}_{0}$ の 5 ビット の信号によっこ音量が決められて発音します。このとき $\mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1} \mathrm{E}_{0}$ は時間と共に変化！ますの ご可変音量になります。


エンペローブ周波数の設定（レジスタR日，Rcで制御）
エンベローブの繰り返し周波数 FEは，エンベローブ周期設定値EP（10進）から次の様に決わられ ます。 F $\dagger$ 汒クロック周波数ごす。 $\mathrm{F}_{\mathrm{E}}=\frac{\mathrm{F} \phi}{512 \mathrm{EP}}$

16ビットのエンペローフ周期設定値 (EP)

## エンベロープの形状コントロール（レジスタRDで制卸）

エンベローブのレベルは $\mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1} \mathrm{E}_{0}$ の 5 ビットからなるエンペロープ発生器ご決まりますがエンベロ
一プの形状はエンベローブ発生器のカウンタ値を上畀•下降きせたり，1サイクルご止めたり繰り返しを
きせたりして作られます。この形状の制御はレジスタRDのビットB3～B0によっこ行なうつれます。


エンペローブの形状制御信号

CONT．ATT．ALT．HOLD：二よりエンベローブは次表の様な各種形状をとリます：

エンペロープ形状表

| B3 | B2 | $\mathrm{B}_{1}$ | B ${ }_{0}$ | エンベローフ形状 |
| :---: | :---: | :---: | :---: | :---: |
| CONT | ATT | ALT | HOLD |  |
| 0 | 0 | $\times$ | $\times$ |  |
| 0 | 1 | $\times$ | $\times$ |  |
| 1 | 0 | 0 | 0 | $\bigcirc$ |
| 1 | 0 | 0 | 1 |  |
| 1 | 0 | 1 | 0 | ， |
| 1 | 0 | 1 | 1 |  |
| 1 | 1 | 0 | 0 | $\square$ |
| 1 | 1 | 0 | 1 |  |
| 1 | 1 | 1 | 0 | ， |
| 1 | 1 | 1 | 1 |  |

DAコンバータ

DAコンバータは最大振巾を 1 V V正規化した時に下図に示す様な出力に変换します。
これは自線对数変換になっていて，広いタイナミックレンジを持ち，自然な減站感が得られます。


## ＞シリアルキースカ

初期値設定時シリアルキースカか機能する様に設定したならば $\overline{\mathrm{Y} 10}$ ，$\overline{\mathrm{SK}}$ 瑞子から下記の仕様に基つ くシリアルデータを内部でキーリターン信号にORで足し込むことが出来ます。


$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{B}_{15} & \mathrm{~B}_{14} & \mathrm{~B}_{13} & \mathrm{~B}_{12} & \mathrm{~B}_{11} & \mathrm{~B}_{10} & \mathrm{~B}_{9} & \mathrm{~B}_{8} & \mathrm{~B}_{7} & \mathrm{~B}_{6} & \mathrm{~B}_{5} & \mathrm{~B}_{4} & \mathrm{~B}_{3} & \mathrm{~B}_{2} & \mathrm{~B}_{1} & \mathrm{~B}_{0} \\
\hline
\end{array}
$$

$\overline{\mathrm{Y} 10} / \overline{\mathrm{SK}}$ 墦子に入力するシリアル信号はクロック周波数に対し非同期でも可能であります。波形及びタイミングは図と表にしたがつ て下きい。そして，入力される信号の負函性のパルス間隔が 0 ＂又は ＂ 1 ＂のレベルを示します。上図の例では1番目は＂ 0 ＂，2番目は＂ 1 ＂， ‥16番目には＂ 1 ＂が入力された状態です。これらはB15～B 0 で表わきれる16ビットのシリアルデータ用レジスタにストアされます。
シリアル仿昜のタイミング表

| 記号 | MIN | MAX |
| :---: | :---: | :---: |
| $\mathrm{T}_{w}$ | $\frac{265}{\mathrm{~F} \phi}$ | - |
| $\mathrm{T}_{0}$ | - | $\frac{2040}{\mathrm{~F} \phi}$ |
| $\mathrm{~T}_{1}$ | $\frac{2056}{\mathrm{~F} \phi}$ |  |
| $\mathrm{~T}_{0}-\mathrm{T}_{\mathrm{w}}$ | $\frac{8}{\mathrm{~F} \phi}$ |  |

F申：クロック周波数 このとき綪けて17番目の入力あればそれはビットB。に入力されビッ ト $\mathrm{B}_{0}$ のデータはビット $\mathrm{B}_{1} に \cdots$ ビット $\mathrm{B}_{14}$ のデータはビット $\mathrm{B}_{15}$ にシ フトしビット $\mathrm{B}_{15}$ のデータはすてられます。 シリアルスカが終了したならば，キーホード及びスロット指定レジスタのビット割リ当て表に示すキ一ホード聑動レジスタのビット0，1 状態を定めることにより次表の様にキーボードリターン信号と同様に8ビット単位にセレクトし読み込みを行い，そしてシリアルデータ用の16ビットレジスタをク リアします。

シリアルデータの盶み込みとものレジスタクリアー表

| キーボード駆動ビット |  | 内 | 容 |
| :---: | :---: | :---: | :---: |
| B 0 | $\mathrm{B}_{1}$ |  |  |
| 0 | 0 |  |  |
| 0 | 1 |  |  |  |
| 1 | $\times$ | シリアルデータ用16ビットレジスタのクリアー |  |

この16ビットレジスタのクリアは上表の様にビットBoをレヘル1にするここご行かれますのごこのこき ビット $\mathrm{B}_{1}-\mathrm{B}_{3}$ をある値に定めること汒よりキーホード駆動出力端子の「1，「3，「ラ，「i，「9のい な゙ルかに16ビットレジスタクリアと同時に出力を得ることが出来ます。この出力信号を次のシリアルデー ターク送り出し用こするここが可能ごす。

2）シリアルデータをcpuが読ふ远む時キーホードリターン信号が同時！こ入力されるこ結果！こ 両方のOR論理をこったらのこなります。





基本回路例（メモリーコントロール部分，RAM64Kbyte，スロット＝0 拡張した婸合）

＊S3527に入力されていないアドレスビットすべてのNAND詥理をとった信号を入力する。



## 電気的特性

## 1．絶対最大定格

| III［］ | 定 格 値 | 单位 |
| :---: | :---: | :---: |
|  | －0．3～7．0 | $\checkmark$ |
|  | $-0.3-1 \mathrm{VD}+0.3$ | $\checkmark$ |
| 動作㵄䦷温度 | 0－70 | ${ }^{\circ} \mathrm{C}$ |
| 保存温度 | $-50 \sim 125$ | ${ }^{3} \mathrm{C}$ |

## 2．推奨動作条件

| 項 | 目 | 記 号 | 最小 | 標準 | 最 大 | 单位 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 电源書压 |  | Vod | 4.75 | 5.0 | 5.25 | 1 |
|  |  | Vss | 0 | 0 | 0 | $V$ |

3．直流特性（ $T O D=0 . C \sim 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{v} \sim 5.25 \mathrm{v}, \mathrm{V}_{S S}=O \mathrm{~V}, \mathrm{~V}_{S S^{\circ}}=O \mathrm{~V}$ ）

| 項 日 | 記 号 | 条 件 | 最 小 | 標 準 | 最大 | 中位 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 低レベル入力東匡 | VIL！ | （ $\overline{\mathrm{F}}$－$\overline{\mathrm{X}}$ 以以外） | －0．3 |  | 0.8 | $\stackrel{ }{ }$ |
|  | V1． | （ $\overline{\overline{7}}-\overline{\mathrm{X}})^{\prime}$ | $-0.3$ |  | 1.5 | $\checkmark$ |
| 商レベル入力電王 | $V_{16}$ | （ $\overline{\mathrm{N} \overline{7}}-\overline{\mathrm{X}}$ 以以外） | 2.0 |  | Vか． | 1 |
|  | Vone | $(\overline{\mathrm{S}}-\overline{\mathrm{N}} \mathbf{})$ | 3.5 |  | Vod | $\checkmark$ |
| 低しベル出力菓圧 | $V \mathrm{Cl}$ | 住 01 | 0 |  | 0.45 | $\stackrel{ }{ }$ |
|  | $V_{\text {OL：}}$ | $\mathrm{IOL}=10 \mathrm{~mA}$（ $\overline{\text { PSTB }} \cdot \overline{\mathrm{T} . \mathrm{AIT}} \cdot \overline{\mathrm{CAPS}}$. | 0 |  | 0.45 | $\checkmark$ |
| 高レペル出力雨圧 | 5 OH |  | 4.0 |  | V L ） | V |
| 入力電流 | $I_{1}$ | $V_{N}=0{ }^{\circ}$ | －50 |  | －500 | 1．A |
| 入力リーク乐流 | $\mathrm{I}_{\mathrm{LI}}$ | $V_{\text {N }}=0-5{ }^{\prime}$ |  |  | 10 | $\because A$ |
| 出力リーク流 | I lo | $V_{0}=0-5{ }^{\text {r }}$ |  |  | 10 | $1 / \mathrm{A}$ |
| 電源电流 | IdD |  |  |  | 35 | mA |

 TRGA2．TRGB2．STB2．$\overline{\mathrm{Y10}}, \overline{\mathrm{SK}}, \overline{\mathrm{Y} 0}-\overline{\mathrm{Y}}$

 $\mathrm{IOH}=-0.2 \mathrm{~mA}$（OPEN DRAINをのぞく出力漛子）

## S3527

## 4．交流特性 注 1）

クロックタイミング

| 411 | M＇＇； | 条 作： | 品 小 | \％i： | 治 人 | iij 倞 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| フロ，ク部期 | Tc |  |  | 280 |  | ns |
|  |  |  |  |  | 30 | ns |
|  | Til．\％ 0 |  |  | $1: 3$ |  | ns |
|  | T ：ur． $\mathrm{T}_{\text {：of }}$ | $C_{L}=-0 \mathrm{PF}$ |  |  | ： 0 | ns |

ライトタイミング


リードタイミング

| ！！ 11 | iit ${ }^{\text {\％}}$ | 条 | 4 | 哏小 | 吹 | if．fir |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | T $\overline{R D}$ D | \} il 31 |  |  | 250 | ns |
|  | TRD f |  |  |  | 100 | ns |
|  | T $\overline{R D} \mathrm{~S}$ |  |  | 0 |  | ns |
| 人ノテークの $\overline{\mathrm{RD}}$ ：こ奶广る保䢁時閏 | Trdh |  |  | 0 |  | ns |



iE 31 ：


M1サイクル，MEMORY READ WRITE サイクル，1 O サイクルタイミング

| 41 | 11 | M ${ }^{\text {最 }}$ | 条 件 | 发小 | 號 | 最倞 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CLOCK WAIT |  | $\mathrm{T}: \overline{\text { WT }}$ | $\mathrm{C}_{L}=70 \mathrm{PF}$ |  | bi | ns |
| CLOCK－－TAIT | ， | T：Wa |  |  | （i） | ns |
| $\overline{\text { MREQ－}}$－$\overline{\text { AS }}$ | －＂ | TMREA | $\mathrm{C}_{\mathrm{L}}=100 \mathrm{PF}$ |  | 60 | 11. |
|  | ： | TMrR． | ＂ |  | $7)$ | ns |
| CLOCK－－$\overline{\text { RAS }}$ | －＂ | T ：$\overline{\text { R．}}$ | ＂ |  | 70 | ns |
| $\overline{\text { CLOCK }} \cdot-\overline{\text { RAS }}$ | －＂ |  | ＂ | 90 | 180 | ns |
| CLOCK ：－MPX | ；＂ | Tomx | ＂ |  | 70 | ns |
| \1REQ－MPX | －＂ | Tmr．ix | ＂ |  | i） | ns |
| $\overline{\text { RAS }}$－MPX | ＂ | Tरamis | ＂ | ．0） |  | ns |
| $\overline{\text { CLOCK }}$－＊＊ASn | ＂ | T亏¢ $\overline{\text { a }}$ | ＂ |  | 70 | ns |
| \} \overline { \mathrm { IREQ } } －－ { } ^ {  C．ASn  } | ＊ | Tmrca | ＂ |  | \％ | ns |
| CLOCK－－$\overline{\mathrm{TE}}$ | ＂ | T ¢ we | ＂ | 30 | 70 | ns |
| CLOCK－－$\overline{\mathrm{TE}}$ | －＂ | $\mathrm{T}=\overline{\mathrm{WE}}$ | ＂ | 30 | \％） | ns |
| \} \overline {  IREQ  } \cdot - \overline {  ROMCS  } | ．＂ | T．$\overline{\text { MR }}$ रo | ＂ |  | －0 | ns |
| $\overline{\text { TREQ }}$－$\overline{\text { ROMICS }}$ | － | Tarro | ＂ |  | －1 | ns |
| \REQ ．${ }^{*} \overline{\mathrm{CSn}}$ | －＂ | T $\overline{\text { TR }} \overline{\text { c }}$ | ＂ |  | ${ }^{1010}$ | ns |
| $\overline{\text { IREQ－}}{ }^{*} \overline{\text { CSn }}$ | ＂ | Tmrcs | ＂ |  | \％） | ns |
| $\overline{\text { TREQ }}$ ．$-\overline{\text { SLTn }}$ | ＂ | T． $\mathrm{MR} \overline{5 L}$ | ＂ |  | （i） | ns |
| TIREQ－－＊$\overline{\text { SLTn }}$ | ＊ | TMRSL | ＂ |  | 71 | ns |
| \IREQ－－＊$\overline{\text { LTTnn }}$ | ＂ | $T$ TMRST | ＂ |  | 70 | ns |
|  | ＂ | TMRST | ＂ |  | $\%$ | ns |
| $\overline{\mathrm{RD}}$ ．－$\overline{\mathrm{IDPCR}}$ | ＂ | T $\overline{R D} \overline{\text { cr }}$ | ＂ |  | 70 | ns |
| $\overline{\mathrm{RD}} \cdot-\overline{\overline{\mathrm{DPCR}}}$ | ＂ | Trdir | ＂ |  | \％） | ns |
| $\overline{\mathrm{TR}} \quad-\overline{\mathrm{VDPCW}}$ | ＂ | T $\overline{W R T W}$ | ＂ |  | 70 | ns |
| $\overline{\mathrm{TR}} \cdot-\overline{\mathrm{TDPCW}}$ | ＂ | Twriw | ＂ |  | 50 | ns |

＊：if：＋）参照


アナログ出カ（SSGSND）

| 項 | 記 号 | 采 件 | 最 小 | 標準 | 最 大 | 位 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 最大出力电圧 | $\mathrm{V}_{\mathrm{OA}}$ | 下図参照 | 0.23 | 0.33 | 0.47 | $\mathrm{~V}_{\mathrm{PP}}$ |



SSGSND出力圧测定時のレジスタの状懸
楽音周波数設定レシスタ：OFF（ $=440 \mathrm{~Hz})$

ミキサレジスタ：A，B，Cチャンネル里独出力

クロックタイミング


M1サイクルタイミング


化れ）＊印信号名は詳しくは下記の様になります。
$\overline{\mathrm{CASn}}: \overline{\mathrm{CAS} 2 / \mathrm{E}} \overline{\mathrm{CAS} 3}$
$\overline{\mathrm{CSn}} \quad: \overline{\mathrm{CS} 1}, \overline{\mathrm{CS} 2,} \overline{\mathrm{CS} 12}$
$\overline{\mathrm{SLT}}: \overline{\mathrm{SLT}}, \overline{\mathrm{SLT} 2}, \overline{\mathrm{SLT} 3 / 30}$
$\overline{\text { SLT } n n}: \overline{\text { SLT01／31，}} \overline{\text { SLT03／33 }}$

MEMORY READ WRITE サイクルタイミング

＊：注＋）参照


## 外形寸法図



