

Instruction

Manual

 2

Table of Contents

1 ACKNOWLEDGEMENTS 4

2 INTRODUCTION 5

3 INSTRUCTIONS FOR USE 6

4 SYSTEM REQUIREMENTS 7

5 TECHNICAL SPECIFICATIONS 7

Overview 7

VGA Connector 8

6 DEVELOPER INFORMATION 9

General information 9

Video processor 9

Audio processor 9

Game controller 10

Memory mapper 10

Conversion tool 10

Modifying MSX Bios to reroute VDP output to Franky 14

7 VDP DOCUMENTATION 15

Introduction 15

VDP ports 15

VDP Programming 16

Control port 16

VDP register write 17

Data port 17

Status flags 18

Color RAM 19

Display modes 19

Register reference 21

Patterns 25

Background 25

Horizontal scrolling 25

Vertical scrolling 26

Sprites 27

Table parsing 28

 3

Display timing 29

Display details 30

H counter 31

Interrupts 32

Frame interrupts 33

Line interrupts 33

Miscellaneous 34

8 PROGRAMMABLE SOUND GENERATOR DOCUMENTATION 35

Accessing the SN76489 from software 35

SN76489 registers 35

Volume registers 36

Tone registers 36

Noise register 36

Example program 37

SN76489 register writes 37

How the SN76489 makes sound 39

Tone channels 40

Noise channel 40

The Linear Feedback Shift Register 41

The external Linear Feedback Shift Register 41

Volume/attenuation 42

The imperfect SN76489 43

Playing samples on the PSG 44

Pulse Code Modulation 44

Advanced PCM 45

Pulse Width Modulation 45

 4

Acknowledgements

SuperSoniqs would like to thank the following people first, because without them this

card wouldn’t be a reality:

 Ronnie van der Kolk – www.rklok.nl , for providing us with broken Sega Mark

III consoles so we could build our first prototypes. Luckely the VDP’s still worked.

 Rob Hiep – www.msx.ch , he provided us with cartridge cases so we could

actually give the Franky PCB a place to live in.

 Lino Lampers - members.chello.nl/mlampers/ , for providing us with the vga

connectors and video memory ic’s. My backyard looked like Zombieland

afterwards.

 Bas Kornalijnslijper – www.bas-ditta.info , for arranging the assembly of our

first batch.

 Maxim Zhao – www.smspower.org , for helping out in general and for giving us

permission to use his texts about the audio part of the Sega A/V processors and

modify them.

 Charles MacDonald - http://cgfm2.emuviews.com/, for giving us permission to

use his VDP documentation and modify them.

 Albert Beevendorp - www.bifi.msxnet.org , for testing and writing programs

http://www.rklok.nl/
http://www.msx.ch/
http://members.chello.nl/mlampers/
http://www.bas-ditta.info/
http://www.smspower.org/
http://cgfm2.emuviews.com/
http://www.bifi.msxnet.org/

 5

Introduction

First of all: congratulations with your new purchase. Franky is a powerful new video and

audio extension card for MSX computers. The core component on this hardware is a

combined video and audio processor that is also used by the Sega Mark III and Sega

Master System game consoles. It has his own video memory, a volume output adjuster

(on the PCB) and the output connector is a standard 15 pin VGA connector that has been

made pin compatible with the One Chip MSX, so you can use existing OCM cables to

connect Franky to your monitor or TV with RGB input support. Franky also features a

PAL/NTSC encoder that can ensure compatibly with the CVBS (composite video) standard

in your country. This might be convenient if your monitor or TV has support for CVBS

only. Please see chapter ‘Technical Specifications’ for more details.

Franky is not a Sega console on its own. Although it can potentially run most programs

made for the 8-bit Sega consoles mentioned, Franky still needs an MSX computer to

operate. Franky uses his own addresses for accessing the video/audio processor.

Therefore, existing Sega homebrew software needs to be converted with our software

converter. Testing shows that about 75% of programs tested will run without problems

after using the converter, without any further adjustments. This number surely will rise

in time when more developers start using Franky. We expect more tools, useful programs

and new games in the near future. If you start a new project with Franky, please let us

know!

If you need support while developing for Franky these places are a great start:

supersoniqs.wordpress.com Our website where we will post new information on our

products, keep our technical documentation and tools up to date and inform you about

new developments.

www.smspower.org Great site about the Sega Master System and Mark III. It has a lot of

developer information on Sega hardware. It features an active community with extensive

forum and some great people with a lot of technical knowledge about Sega software and

hardware.

www.msx.org Biggest MSX community site on the internet with more than 5000

members. Please check the forum and post your questions and remarks in the cross

development section.

http://supersoniqs.wordpress.com/
http://www.smspower.org/
http://www.msx.org/

 6

Also, there are IRC channels where MSX developers and users meet. These are:

#MSXdev on Rizon (irc.rizon.net)

#MSX on Undernet (eu.undernet.org)

#MSX on Rizon (irc.rizon.net)

To connect to IRC channels you need a dedicated IRC client like mIRC for windows.

More information on IRC can be found at Wikipedia: http://en.wikipedia.org/wiki/Irc

Have great fun with your new hardware and thank you for exploring new possibilities on

MSX with Franky!

Instructions for use

Franky, like most cartridges for your MSX computer, does not like being inserted in your

MSX cartridge slot when the MSX is powered on. Please make sure that your MSX is

powered off when inserting or removing Franky. Else you might irreversibly damage

Franky and / or your MSX computer.

Franky consist out of more than 45 assembled electronic components. So please be

gentle when you move or store Franky.

Besides an MSX, Franky also needs a cable to hook up the shared video / audio out

connector to your monitor or TV. This cable is not part of your purchased product

package because there are different standards for RGB and CVBS connectors. Please

check the chapter “Technical specifications’ to examine the pin layout diagram of

Franky’s output connector to build your own cable. You can also order a custom made

cable online at www.bas-ditta.info, if your input connectors are not too exotic.

When Franky is connected to your MSX and everything is powered on, you can start

using Franky with the software converter, program your own programs or adjust your

existing code for use on the Franky hardware. Please see chapter ‘Developer information’

for more information how to program for Franky.

Please note that when using the software converter to load programs your

joystick needs to be in joystick port 2. MSX game port 2 is port 1 in Sega programs.

http://www.mirc.com/
http://en.wikipedia.org/wiki/Irc
http://www.bas-ditta.info/

 7

System requirements

Franky works on any MSX, with or without disk drive. Still, if you want to use the

software converter and load converted Sega programs we recommend using an MSX with

at least a connected disk drive. For converted Sega programs the same rule apply as

when using MSX programs that are converted from cartridge: you need more memory

than the original size of the program. We recommend using a MSX with disk drive and

512KB or more. Of course, if you are programming your own software you are not bound

to any requirements, except those you really need for your program.

If you want to use both the RGB output of your MSX computer and the RGB output

possibility of the VGA connector on Franky at the same time, two monitors (or a monitor

and a TV) or switch box are needed. However, if your monitor or TV supports selectable

RGB and CVBS input, you can choose to connect the MSX to your RGB input, and Franky

to the CVBS input (or vice versa, depending on which output possibilities your MSX

provides), thus eliminating the need for a dual monitor setup.

Technical specifications

Overview

Sega A/V Processor: model 315-5124 or 315-5246

Graphics: VDP (Video Display Processor) derived from Texas Instruments TMS9918

32 simultaneous colors available (two separate palettes with 16 colors out of 64)

Screen resolutions 256×192 and 256×224. PAL also supports 256×240

3.546893 MHz for PAL/B/G (through 4-pin DIP crystal oscillator)

3.579545 MHz for NTSC (clock provided by MSX)

3.575611 MHz for PAL-M (by replacing the 4-pin DIP oscillator, not included)

8×8 pixel characters, max 463

8×8 or 8×16 pixel sprites, max 64

Horizontal, vertical, and partial screen scrolling

Sound (PSG): Texas Instruments SN76489 (Build in VDP)

4 channel mono sound (3 Square Waves, 1 White Noise)

3 tone generators, 10 octaves each, 1 white noise generator

Video RAM: 128kb

Build in PAL/NTSC encoder: model Analog Devices AD722, AD724 or AD725

 8

VGA Connector

The connector used for the video and sound output of Franky is a 15 pin standard VGA

connector

The pin layout (seen as looking towards the connector) is as follows:

Pin 1 Red

Pin 2 Green

Pin 3 Blue

Pin 4 Not connected

Pin 5 Ground

Pin 6 Red ground

Pin 7 Green ground

Pin 8 Blue ground

Pin 9 Not connected

Pin 10 Ground

Pin 11 Not connected

Pin 12 Not connected

Pin 13 CVBS (Composite) output

Pin 14 Audio

Pin 15 Not connected

Please note that although we used a VGA connector for durability, you can not use this

connector to connect the Franky VDP card to a VGA monitor.

 9

Developer information

General information

The Sega and MSX systems have a lot in common and this makes it possible to convert

software from Sega to MSX (and vice versa). Both systems use a Z80 CPU and have the

same kind of memory mapping. Even the VDP is partly compatible to the MSX1 VDP, but

with more options. The original Sega Audio / Video processor is used in Franky. MSX

needs to handle the remaining parts. This being the game controller; sound and memory

mapping.

Originally the I/O addresses used in the Sega system are occupied in the MSX system;

therefore the Sega VDP places data on different addresses which are unused in the MSX

system. The VDP and PSG of the Sega are in the same chip, in a way that the difference

between the I/O of PSG and VDP is &H40 by hardware. This reduced our choices of

assigning I/O addresses while designing Franky. To maintain MSX compatibility we have

chosen an I/O address of &H88 for the VDP and &H48 for PSG.

The Franky card itself uses the I/O addresses &H88, &H89, &H48 and &H49. In the Sega

system the game controller uses I/O &HDC and &HDD and if an FM-Pac is available it

uses &HF0 to &HF2. All these I/O addresses must be changed to run a Sega program on

MSX, this is also the case for the memory mapping which is done at memory addresses

in the Sega system and I/O addresses in the MSX system

Video processor

The Sega VDP is located at &H88 and &H89 in Franky, this used to be &HBE and &HBF in

the Sega Master System console. This means all OUT, IN, OUTI, OTIR, INI and INIR

instructions to &HBE or &HBF must be changed to &H88 and &H89.

Audio processor

The same counts for the audio processor. All OUT, IN, OUTI, OTIR, INI and INIR

instructions accessing &H7E or &H7F (the original Sega addresses), must be changed to

&H48 and &H49.

 10

Game controller

The Sega game controller is located at I/O &HDC for game pad 1 and I/O &HDD for game

pad 2. It turns out that all bits of game pad 1 are compatible with MSX joystick 1. Game

pad 2 requires some computations and bit shifting to make it working on MSX joystick

port 2. If the MSX PSG is set up for register 14, a read from I/O &HA2 returns the same

data as a read from &HDC in the Sega system. So all IN, INI and INIR instructions

accessing &HDC, should be changed to &HA2 and before executing the game, OUT

&HA0,14 to set up the MSX PSG.

Memory mapper

The Sega rom is mapped by writing the page number to memory address &HFFFD,

&HFFFE and &HFFFF, this indicates which 16k part of the rom should be readable at

address &H0000, &H4000 and &H8000. In the MSX system the ram memory is mapped

the same way, but instead of writing the page number to memory, the page number is

written to I/O addresses &HFC, &HFD and &HFE.

Conversion tool

This conversion tool loads the ROM image into the MSX memory starting from the first

page and replaces the following:

Load Sega into RAM, find & replace:

POKE &HFFFD OUT &HFC

POKE &HFFFE OUT &HFD

POKE &HFFFF OUT &HFE

OUT &HBE OUT &H88

OUT &HBF OUT &H89

OUT &H7E OUT &H48

OUT &H7F OUT &H49

OUT &HDC OUT &HA2

OUT &HF0 OUT &H7C

OUT &HF1 OUT &H7D

OUT &HF2 OUT &H7E

32 FF FF -> 00 D3 FE

32 FE FF -> 00 D3 FD

32 FD FF -> 00 D3 FC

32 FC FF -> Switch to empty RAM page, no replace

 11

Search for

Step back 32 bytes, find & replace:

Search for OUT:

INI, OUTI, OTIR, I/O (C) ED A2 / ED A3 / ED B3

/ ED 41

0E 7E -> 0E 48

0E 7F -> 0E 49

0E BE -> 0E 88

0E BF -> 0E 89

0E DE -> No replace

0E DF -> No replace

0E F0 -> 0E 7C

0E F1 -> 0E 7D

01 7E -> 01 48

01 7F -> 01 49

01 BE -> 01 88

01 BF -> 01 89

01 DE -> No replace

01 DF -> No replace

01 F0 -> 01 7C

01 F1 -> 01 7D

D3 7E -> D3 48

D3 7F -> D3 49

D3 BE -> D3 88

D3 BF -> D3 89

D3 DE -> No replace

D3 DF -> No replace

D3 F0 -> D3 7C

D3 F1 -> D3 7D

 12

Search for IN:

After the ROM is loaded, the upper 16k of the Z80 memory space is set to the highest

page in the mapper (OUT &HFF,&HFF). This part acts like the RAM of the Sega system.

Then the memory is initialized by switching the right pages to the Z80 memory (OUT

&HFC,0:OUT &HFD,1:OUT &HFE,2), finally a jump to address &H0000 reinitializes all

hardware and executes the game.

This is a very quick and simple conversion tool and due to the find and replace to the

program some display data or table might be damaged (that’s probably also the reason

that not all games are working as they should). The best results are achieved by

manually converting, disassembling, visual recognizing the difference between code and

data and understanding the meaning of the found OUT instructions.

To get full compatibility, some points should be implemented as well, e.g. if bit 3 of

&HFFFC is set, an SRAM is mapped at &H8000-&HBFFF. The second game pad needs a

subroutine to give the right values when the program reads I/O &HDD and the detection

of the availability of the FM chip is not in the converter as well.

Code example for disabling the MSX VDP interrupts and adding support for joystick port 1

If you want to load manually converted Sega binary programs, you need to disable the

MSX VDP interrupts.

By only setting OUT &HA0,14 before executing the program and replacing IN (&HDC) by

IN (&HA2) inside the binary, joysticks on joystick port 1 works fine. The example code

below is quick and dirty code and only works on MSX computers where the RAM is

located in slot 3-2:

DB 7E -> DB 48

DB 7F -> DB 49

DB BE -> DB 88

DB BF -> DB 89

DB DC -> DB A2

DB DD -> Read from Gamepad2, no replace

DB DE -> No replace

DB DF -> No replace

DB F2 -> No replace

 13

This is the disassembled code in the data lines disassembled:

The instruction to disable interrupts is different for V9938/58 than for TMS9918. The

hardware Z80 interrupt acknowledge is not used in MSX, and, to our current knowledge,

neither in SMS. The 'normal' Z80 application will listen to the IORQ and M1 signals, when

both are low, the Z80 indicates that the interrupt is heard and will be processed as soon

the software allows it. In MSX the interrupt flag of the VDP must be cleared when an

interrupt occurs otherwise the VDP will keep the INT line low so when the Z80 exits the

interrupt service routine and enables the interrupt, it will jump directly to the ISR again.

 DI

 LD A,&HFF ;All Z80 memory space to the mapper

 OUT (&HA8),A

 LD A,(&HAA) ;Choose sub slot for mapper

 LD (&HFFFF),A

 LD A,4 ;Start of 1st part of 32k rom

 OUT (&HFC),A

 LD A,5 ;2nd part of 32k rom

 OUT (&HFD),A

 OUT (&HFE),A

 JP &H0000 ;Start program

10 IF PEEK(&HF677)<>&HC0 THEN POKE &HF677,&HC0:POKE &HC000,0:RUN

"HOMEBREW.BAS"

20 OUT &HFE,4:BLOAD "HOMEBR1.BIN"

30 OUT &HFE,5:BLOAD "HOMEBR2.BIN"

35 OUT &HA0,14

36 VDP(0)=VDP(0) AND 207

37 VDP(1)=VDP(1) AND 219

40 A=&HC800

50 DEF USR=&HC800

60 READ D$:IF D$="*" THEN A=USR(0)

70 POKE A,VAL("&H"+D$):A=A+1:GOTO 60

80 DATA

F3,3E,FF,D3,A8,3E,AA,32,FF,FF,3E,04,D3,FC,3E,05,D3,FD,D3,FE,C3,00,00,*

 14

Modifying MSX Bios to reroute VDP output to Franky

It is possible to modify an existing first generation MSX Bios to use the Franky VDP card

as the default for MSX VDP output. The Sega VDP is for a large part TMS9919

compatible. On MSX1 and MSX2 computers this means that you have to replace the

existing MSX Bios (e)proms in your computer.

You have to modify an existing bios so that every I/O to the VDP at &H98 or &H99 is set

to &H88 and &H89. Fortunately most MSX games are programmed a very descent way,

almost everything is done via the BIOS or the actual VDP address is read out from

address 6 and 7.

If you have a MSX Turbo R things are a lot easier. The BIOS of the TR is very easy to

modify and it remains modified until you give a hard reset. The trick here is to put the TR

in R800 mode, overwrite rampage 28 and 29 with the modified BIOS and switch to

R800D mode or Z80D. As you might know a TR has 64k less memory in DRAM mode

because it uses 64k for BIOS, in fact the BIOS is mirrored to DRAM while DRAM is much

faster. This mirror seems to be copied at startup only, later on while switching between

R800 and R800D only some hardware routes are changed inside the S1990. If we in the

meantime update the mirror, we get an updated BIOS in R800D mode.

A very nice feature of the TR is that there is also a Z80D mode, not supported by the

default BIOS but it is very easy. Just try in BASIC, when the TR is in Z80 mode (by

default Z80 ROM mode) you will find the BIOS at address &H8000 if you give an OUT

&HFE,12. This is now 'free memory' and in ROM mode the full 256k is available:

For an TR ST the mirror starts at 12 (OUT &HFE,12), for an GT it is 28.

? PEEK(0) 'Read the first byte of the BIOS

 243

Ok

OUT &HFE,12:? PEEK(&H8000) 'Switch BIOS mirror to address &H8000

 243

Ok

POKE &H8000,123 'Change BIOS mirror

Ok

OUT &HE4,6:OUT &HE5,32 'Switch to unsupported Z80 DRAM mode

Ok

? PEEK(0)

 123

Ok

 15

VDP documentation

Introduction

The Video Display Processor (VDP) is a graphics chip derived from the Texas Instruments

TMS9918, used by Sega in their video game consoles and arcade hardware.

There are four versions of the VDP, the ones below are used for Franky:

315-5124 - Used in the Mark III and Sega Master System .

315-5246 - Used in the Sega Master System, SMS 2 and later versions .

Just for simplicity, we refer to these in order as the 315-5124 and the 315-5246. All

versions of the VDP also have a Texas Instruments SN76489 sound chip built in. It is

identical to the stand-alone version of the same chip.

VDP ports

On MSX the Sega VDP in Franky is commonly accessed at the following

Z80 I/O ports:

$48 = V counter (read) / SN76489 data (write)

$49 = H counter (read) / SN76489 data (write, mirror)

$88 = Data port (r/w)

$89 = Control port (r/w)

The address decoding for the I/O ports is done by the VPD/PSG chip with A7, A6, and A0

of the Z80. In Franky the remaining address lines are decoded by another chip to prevent

mirrors. This is because there are not many addresses free in the MSX system that aren’t

already used by other hardware extensions.

The H and V counters are described in the display timing section. The control and data

ports are described in the VDP programming section.

 16

VDP Programming

Control port

The VDP is programmed by sending a two-byte sequence to the control port, which we

call a command word. The command word is used to define an offset into VRAM or CRAM

for subsequent data port I/O, and also to write to the internal VDP registers.

In order for the VDP to know if it is receiving the first or second byte of the command

word, it has a flag which is set after the first one is sent, and cleared when the second

byte is written. The flag is also cleared when the control port is read, and when the data

port is read or written. This is primarily used to initialize the flag to zero after it has been

modified unpredictably, such as after an interrupt routine has executed.

The VDP has two components that are used for accessing CRAM and VRAM, the address

register and the code register. The address register is 14 bits and defines the address

into VRAM for reads and writes, and the address into CRAM for writes. The code register

is 2 bits and selects four different operations: VRAM write, VRAM read, CRAM write, and

VDP register write.

The command word has the following format:

CDx : Code register

Axx : Address register

When the first byte is written, the lower 8 bits of the address register are updated. When

the second byte is written, the upper 6 bits of the address register and the code register

are updated, and the VDP may carry out additional processing based on the value of the

code register:

MSB LSB

CD1 CD0 A13 A12 A11 A10 A09 A08 Second byte written

A07 A06 A05 A04 A03 A02 A01 A00 First byte written

 17

Code value Actions taken

0 A byte of VRAM is read from the location defined by the

address register and is stored in the read buffer. The address

register is incremented by one. Writes to the data port go to

VRAM

1 Writes to the data port go to VRAM.

2 This value signifies a VDP register write, explained below.

Writes to the data port go to VRAM.

3 Writes to the data port go to CRAM.

When accessing CRAM, the upper bits of the address register are ignored as CRAM is

smaller than 16K (either 32 or 64 bytes depending on the VDP). The address register will

wrap when it exceeds $3FFF.

VDP register write

While the address and code register are updated like normal when a VDP register write is

done, the command word sent can be viewed as having a different format to the

programmer:

Rxx : VDP register number

Dxx : VDP register data

? : Ignored

The VDP selects a register using bits 3-0 of the second byte, and writes the data from the

first byte to the register in question. There are only 10 registers, values 11 through 15

have no effect when written to.

Example: Writing &H5 to register 1

Data port

Depending on the code register, data written to the data port is sent to either VRAM or

CRAM. After each write, the address register is incremented by one, and will wrap past

$3FFF.

MSB LSB

D07 D06 D05 D04 D03 D02 D01 D00 First byte written

1 0 ? ? R03 R02 R01 R00 Second byte written

OUT &H89,&B10000001:OUT &H89,5

 18

Reads from VRAM are buffered. Every time the data port is read (regardless of the code

register) the contents of a buffer are returned. The VDP will then read a byte from VRAM

at the current address, and increment the address register. In this way data for the next

data port read is ready with no delay while the VDP reads VRAM. An additional quirk is

that writing to the data port will also load the buffer with the value written.

Example: Writing 11,12,13 to VRAM addresses 3,4,5:

Status flags

Reading the control port returns a byte containing status flags:

INT - Frame interrupt pending

This flag is set on the first line after the end of the active display period. It is cleared

when the control port is read. For more details, see the interrupts section.

OVR - Sprite overflow

This flag is set if there are more than eight sprites that are positioned on a single

scanline. It is cleared when the control port is read. For more information see the sprites

section.

COL - Sprite collision

This flag is set if an opaque pixel from any two sprites overlap. It is cleared when the

control port is read. For more information see the sprites section. The remaining bits are

not set by the VDP, and return garbage values for the 315-5124 and 315-5246.

OUT &H89,3:OUT &H89,&B01000000

OUT &H88,11:OUT &H88,12:OUT &H88,13

A07 A06 A05 A04 A03 A02 A01 A00 First byte written

0 1 A13 A12 A11 A10 A09 A08 Second byte written

MSB LSB

INT OVR COL --- --- --- --- ---

 19

Color RAM

The color palette used by sprites and backgrounds is arranged as two 16-color palettes.

Background patterns can use either palette, while sprite patterns can only use the second

one. These color palettes do not apply to the MSX compatible display modes.

The palette is defined by 32 bytes of color RAM (CRAM). This memory is internal to the

VDP, and is write-only. Each byte has the following format:

- = Unused

R = Red component

G = Green component

B = Blue component

Up to 64 possible colors can be used, and up to 32 can be displayed on screen at any

given time.

Example: Set color 4 to red:

Display modes

The TMS9918 has three bits which select different display modes called M1, M2, and M3.

However, only four combinations of these bits are documented in the TMS9918 manual:

The other four undocumented modes are simply variations of the above, they are no

unique. The SMS VDP added another mode select bit that enabled mode 4, which is

specific to the SMS. The 5246 changed the function of the TMS9918 mode select bits to

pick different resolutions for a standard mode 4 screen.

MSB LSB

--BBGGRR

A07 A06 A05 A04 A03 A02 A01 A00 First byte written

1 1 A13 A12 A11 A10 A09 A08 Second byte written

OUT &H89,4:OUT &H89,&HC0

OUT &H88,&B00000011

Mode 0 - Graphics I

Mode 1 - Text

Mode 2 - Graphics II

Mode 3 - Multicolor

 20

Here's a list of all possible display modes:

To summarize from the above chart, for the 315-5246 only, the M1 and M3 bits select

the display resolution only when M2 is set. If both bits are set, the regular 192-line

display is used. If M2 is cleared, then M3 has no effect and M1 will select the invalid text

mode.

The invalid text mode is identical to TMS9918 text mode. It uses CRAM for colors instead

of using a fixed palette and register #7 for selecting the text color. Each tile is repeated

four times on the display, which limits the usefulness of this mode. Scrolling only moves

the tile graphics around within their 6x8 cells, the actual position in the name table is not

changed. If bit 7 of register #0 is set, columns 0-23, 32-39 can scroll vertically while

columns 24-31 do not. If bit 6 of register #1 is set, rows 0 and 1 will not scroll

horizontally. Finally, setting the horizontal scroll to values of 6 or 7 will cause each tile to

be filled with the backdrop color.

M4 M3 M2 M1 315-5124 315-5246

-- -- -- -- ---------- -------------------------

0 0 0 0 Graphic I Graphic I

0 0 0 1 Text Text

0 0 1 0 Graphic 2 Graphic 2

0 0 1 1 Mode 1+2 Mode 1+2

0 1 0 0 Multicolor Multicolor

0 1 0 1 Mode 1+3 Mode 1+3

0 1 1 0 Mode 2+3 Mode 2+3

0 1 1 1 Mode 1+2+3 Mode 1+2+3

1 0 0 0 Mode 4 Mode 4

1 0 0 1 Invalid text mode Invalid text mode

1 0 1 0 Mode 4 Mode 4

1 0 1 1 Invalid text mode Mode 4 (224-line display)

1 1 0 0 Mode 4 Mode 4

1 1 0 1 Invalid text mode Invalid text mode

1 1 1 0 Mode 4 Mode 4 (240-line display)

1 1 1 1 Invalid text mode Mode 4

 21

Register reference

The following information only applies to mode 4. When using the TMS9918 modes, some

registers cannot be used and others have different purposes.

Register $00 Mode Control No. 1

D7 1= Disable vertical scrolling for columns 24-31

D6 1= Disable horizontal scrolling for rows 0-1

D5 1= Mask column 0 with over scan color from register #7

D4 IE1) 1= Line interrupt enable

D3 (EC) 1= Shift sprites left by 8 pixels

D2 (M4) 1= Use Mode 4, 0= Use TMS9918 modes (selected with M1,

M2, M3)

D1 (M2) Must be 1 for M1/M3 to change screen height in Mode 4

Otherwise has no effect

D0 1= No sync, display is monochrome, 0= Normal display

Setting bit 1 cause the sync information to be lost and gradually the color and picture

brightness fade until the display is off.

Register $01 Mode Control No. 2

D7 No effect

D6 (BLK) 1= Display visible, 0= display blanked

D5 (IE0) 1= Frame interrupt enable

D4 (M1) Selects 224-line screen for Mode 4 if M2=1, else has

no effect

D3 (M3) Selects 240-line screen for Mode 4 if M2=1, else has

no effect

D2 No effect

D1 Sprites are 1=16x16,0=8x8 (TMS9918), Sprites are

1=8x16,0=8x8 (Mode 4)

D0 Sprite pixels are doubled in size.

Even though some games set bit 7, it does nothing.

 22

Register $02 Name Table Base Address

D7 No effect

D6 No effect

D5 No effect

D4 No effect

D3 Bit 13 of the table address

D2 Bit 12 of the table address

D1 Bit 11 of the table address

D0 No effect

If the 224 or 240-line displays are being used, only bits 3 and 2 select the table address

like so:

The contents of this register are handled differently. In order to explain, here is a layout

of the VRAM address bus when the VDP fetches name table data:

b = Bits 3-1 of register #2

r = Name table row

c = Name table column

w = Low or high byte of name table word

x = Bits 3-0 of register #2

In all other versions of the VDP, bit 0 of register #2 is ignored. However, the SMS VDP

will logically AND bit 0 with the VDP address, meaning if bit 0 is cleared, bit 4 of the

name table row is forced to zero.

 When the screen is displayed, this causes the lower 8 rows to mirror the top 16 rows.

The only game that utilizes this feature is the Japanese version of Y's.

The original TMS9918 has a similar problem with other table registers, however this is

not apparent in the TMS9918 modes of the 315-5246.

MSB LSB

--bbbrrrrrcccccw Address bus

--xxxx---------- Contents of register #2 shifted to the left

D3 D2 Address

-- -- -------

0 0 $0700

0 1 $1700

1 0 $2700

1 1 $3700

 23

Register $03 Color Table Base Address

D7 No effect

D6 No effect

D5 No effect

D4 No effect

D3 No effect

D2 No effect

D1 No effect

D0 No effect

All bits should be set. Otherwise the VDP will fetch pattern data and name table data

incorrectly.

Register $04 Background Pattern Generator Base Address

D7 No effect

D6 No effect

D5 No effect

D4 No effect

D3 No effect

D2 No effect

D1 No effect

D0 No effect

Bits 2-0 should be set. Otherwise the VDP will fetch pattern data and name table data

incorrectly.

Register $05 Sprite Attribute Table Base Address

D7 No effect

D6 Bit 13 of the table base address

D5 Bit 12 of the table base address

D4 Bit 11 of the table base address

D3 Bit 10 of the table base address

D2 Bit 9 of the table base address

D1 Bit 8 of the table base address

D0 No effect

If bit 0 is cleared the sprite X position and tile index will be fetched from the lower 128

bytes of the sprite attribute table instead of the upper 128 bytes. It should be set for

normal operation.

 24

Register $06 Sprite Pattern Generator Base Address

D7 No effect

D6 No effect

D5 No effect

D4 No effect

D3 No effect

D2 Bit 13 of the table base address

D1 No effect

D0 No effect

Bits 1 and 0 act as an AND mask over bits 8 and 6 of the tile index if cleared. They

should be set for normal operation.

Register $07 Overscan/Backdrop Color

D7 No effect

D6 No effect

D5 No effect

D4 No effect

D3 Bit 3 of the overscan color

D2 Bit 2 of the overscan color

D1 Bit 1 of the overscan color

D0 Bit 0 of the overscan color

The backdrop color is taken from the sprite palette.

Register $08 Background X Scroll

All eight bits define the horizontal scroll value. See the background

section for more details

Register $09 Background Y Scroll

All eight bits define the vertical scroll value.See the background section

for more details

Register $0A Line Counter

All eight bits define the line counter value. See the interrupts section

for more details

 25

Patterns

The background and sprites are made out of 8x8-pixel patterns. Each pattern is

composed of four bitplanes, so individual pixels can be one of 16 colors. Pattern data is

stored in VRAM. There is enough memory for 512 patterns, though some of the available

VRAM is used by the sprite attribute table and name table. Each pattern uses 32 bytes.

The first four bytes are bitplanes 0 through 3 for line 0, the next four bytes are bitplanes

0 through 3 for line 1, etc., up to line 7. For more information about how patterns are

used, see the background and sprite sections.

Background

The background is made up of 8x8 tiles that can use 16 colors from either palette. The

background is defined by the name table, which is a 32x28 matrix of words stored in

VRAM. If using the 224 or 240-line displays, the size of the name table is 32x32 instead.

Each word in the name table has the following layout:

- = Unused. Some games use these bits as flags for collision and damage zones (such as

Wonderboy in Monster Land, Zillion 2)

p = Priority flag. When set, sprites will be displayed underneath the background pattern

in question

c = Palette select

v = Vertical flip flag

h = Horizontal flip flag

n = Pattern index, any one of 512 patterns in VRAM can be selected

Horizontal scrolling

Register $08 can be divided into two parts, the upper five bits are the starting column,

and the lower three bits are the fine scroll value.

On each scanline, the VDP has a column counter that goes from 0 to 31. The exact pixel

on which the VDP starts rendering columns is offset to the right by the fine scroll value.

For example, if the fine scroll value is set to 7, then 31 columns are fully visible and the

first pixel of the 32nd column is shown at the far right edge of the display.

MSB LSB

---pcvhnnnnnnnnn

 26

The starting column value gives the first column in the name table to use, calculated by

subtracting it from the value 32. So if the starting column value was $1D, the difference

of it from 32 would be $02, hence the first column drawn is number 2 from the name

table. After each column is drawn, the starting column value is incremented by one. It

wraps at 32. When bit 7 of register #1 is set, it is the column counter, not the starting

column value, which is checked to see when the vertical scroll value will be set to zero on

columns 24 to 31.

Most video display hardware will show part of the column that appears in the left 1-7

pixels of the display as the fine scroll value is increased (such as the NES, Genesis,

TurboGrafx-16). However, the SMS VDP does not, and instead this area is filled with the

backdrop color (and sometimes pattern data from sprite #0, but exactly how this is

selected is unknown).

For example, if the fine scroll value was set to $07, instead of normally seeing 7 pixels of

column 32 in pixels 0-7, that area would be filled with the backdrop color and/or sprite

pattern data.

If bit #6 of VDP register $00 is set, horizontal scrolling will be fixed at zero for scanlines

zero through 15. This is commonly used to create a fixed status bar at the top of the

screen for horizontally scrolling games.

Vertical scrolling

Register $09 can be divided into two parts, the upper five bits are the starting row, and

the lower three bits are the fine scroll value.

In the regular 192-line display mode, the name table is 32x28 so the vertical scroll

register wraps past 223. Values larger than 223 are treated as if the scroll range was

between 0 and 31.

In the 224 and 240-line display modes, the name table is 32x32 so the vertical scroll

register wraps past 255.

The vertical scroll value cannot be changed during the active display period, any changes

made will be stored in a temporary location and used only when the active display period

ends (prematurely blanking the screen with bit #6 of register #1 doesn't count).

If bit 7 of register $00 is set, the vertical scroll value will be fixed to zero when columns

24 to 31 are rendered. This is commonly used to create a fixed status bar at the right

edge of the screen for vertically scrolling games.

 27

Sprites

Each sprite is defined in the sprite attribute table (SAT), a 256-byte table located in

VRAM. The SAT has the following layout:

y = Y coordinate + 1

x = X coordinate

n = Pattern index

? = Unused

The 64-byte unused area in the middle of the table can be used for anything, like pattern

data.

The Y coordinate is treated as being plus one, so a value of zero would place a sprite on

scanline 1 and not scanline zero.

If the Y coordinate is set to $D0, then the sprite in question and all remaining sprites of

the 64 available will not be drawn. This only works in the 192-line display mode, in the

224 and 240-line modes a Y coordinate of $D0 has no special meaning.

Sprites that are partially off-screen when the X coordinate is greater than 248 do not

wrap around to the other side of the screen. If bit 3 of register $00 is set, the X

coordinate is treated as being minus eight. Sprites that are partially displayed on the left

edge of the screen do not wrap, either.

00: yyyyyyyyyyyyyyyy

10: yyyyyyyyyyyyyyyy

20: yyyyyyyyyyyyyyyy

30: yyyyyyyyyyyyyyyy

40: ????????????????

50: ????????????????

60: ????????????????

70: ????????????????

80: xnxnxnxnxnxnxnxn

90: xnxnxnxnxnxnxnxn

A0: xnxnxnxnxnxnxnxn

B0: xnxnxnxnxnxnxnxn

C0: xnxnxnxnxnxnxnxn

D0: xnxnxnxnxnxnxnxn

E0: xnxnxnxnxnxnxnxn

F0: xnxnxnxnxnxnxnxn

 28

The pattern index selects one of 256 patterns to use. Bit 2 of register #6 acts like a

global bit 8 in addition to this value, allowing sprite patterns to be taken from the first

256 or last 256 of the 512 available patterns.

When bit 1 of register #1 is set, bit 0 of the pattern index is ignored. The pattern index

selects the pattern to be used for the top of the 8x16 sprite, and the same pattern index

plus one is used for the bottom half of the sprite.

When bit 0 of register #1 is set, sprite pixels are zoomed to double their size.

8x8 sprites are 16x16, 8x16 sprites become 16x32. There is a bug in how the 315-5124

SMS VDP processes zoomed sprites compared to the 315-5246; it will only allow the first

four sprites of the eight shown on a scanline to be zoomed horizontally and vertically,

and the remaining four will be zoomed vertically. The SMS 2 and GG allow all eight

sprites to be zoomed in both directions.

This problem might come from the original TMS9918 which also supported zoomed

sprites but only allowed four sprites to be shown per scanline. Perhaps the designers of

the SMS VDP forgot to add 'horizontal zoom' flags to the extra four sprites they added,

which is why only four of the eight sprites are affected.

Table parsing

On each scanline, the VDP parses the SAT to find which sprites will be displayed on the

next line. It goes through each Y coordinate and checks the position along with the sprite

height (controlled by bit 1 of register #1) to see if the sprite falls on the next line. If it

does, the sprite is added to an internal 8-entry buffer.

The VDP stops parsing sprites under the following conditions:

All 64 sprites have been checked.

All eight buffer entries have been filled.

A sprite Y coordinate of 208 is found (in 192-line mode)

If all eight buffer entries have been used and there are more sprites that fall on the same

line, bit 6 of the status flags is set, indicating a sprite overflow condition occurred. The

bit remains set until the control port is read. Note that this is regardless of the sprite X

coordinate or pattern data, so eight transparent sprites that were off-screen would count

towards a sprite overflow.

On the next scanline, the VDP uses the X coordinate as a counter that is decremented

each time the H counter is incremented. (1) When the counter expires, the bitplanes for

 29

the current line of the sprite are shifted out one bit at a time to form a 4-bit pixel. The

inter-sprite priority is defined by the order of the sprites in the internal buffer. An opaque

pixel from a lower-entry sprite is displayed over any opaque pixel from a higher-entry

sprite.

For example: Out of the eight possible sprites, 5 are used. Sprites 1,2,3 have

transparent pixels. Sprites 4 and 5 have opaque pixels. Only the pixel from sprite 4 will

be shown since it comes before sprite 5.

In the situation where any two sprites from any of the eight positions have opaque pixels

that overlap, the VDP will set bit 6 of the status flags indicating a sprite collision has

occurred. This bit remains set until the status flags are read.

The resulting sprite pixel is printed over any low priority background tile. Or, for high

priority background tiles, only where there is a transparent pixel.

Note:

1. This is how the TMS9918 describes it's sprite hardware. Though it's not actually

important from an emulation standpoint, I assume the SMS also uses the X coordinate as

a down-counter.

Display timing

The two basic elements of the VDP are the H and V counters. The H counter is

incremented with each dot clock. Different video-related events happen when the H

counter reaches certain points. At the end of each scanline, the V counter is incremented

by one, and this continues until an entire frame has been generated.

The H and V counters can be read by the Z80 (see the VDP ports section for details). The

counter is free-running and can be read at any time. The H counter can only be read

when the state of the TH pin of either joystick port changes, which is used for the

lightgun peripheral. When this happens, the value of the H counter at the time TH

changed is returned when the H counter is read, and remains frozen until TH is changed

again.

The V counter section shows which values will be read on each of the 262 or 313 lines

from the V counter. The V counter counts up linearly, but at certain points the value will

change on the next scanline, and this change is indicated by a comma in the range of

numbers. All V counter values are printed in hexadecimal.

 30

Display details

A NTSC machine displays 60 frames per second, each frame has 262 scanlines.

A PAL machine displays 50 frames per second, each frame has 313 scanlines.

The following is a list is a breakdown of the components for each type of display mode for

PAL and NTSC machines.

NTSC 256x192

Lines Description

192 Active display

24 Bottom border

3 Bottom blanking

3 Vertical blanking

13 Top blanking

27 Top border

V counter values 00-DA, D5-FF

NTSC 256x224

Lines Description

224 Active display

8 Bottom border

3 Bottom blanking

3 Vertical blanking

13 Top blanking

11 Top border

V counter values 00-EA, E5-FF

NTSC 256x240

This mode does not work on NTSC machines. All 30 rows of the name table

are displayed, there is no border, blanking, or retrace period, and the

next frame starts after the 30th row. The display rolls continuously

though it can be stabilized by adjusting the vertical hold.

V counter values 00-FF, 00-06

PAL 256x192

Lines Description

192 Active display

48 Bottom border

3 Bottom blanking

3 Vertical blanking

13 Top blanking

 31

54 Top border

V counter values 00-F2, BA-FF

PAL 256x224

Lines Description

224 Active display

32 Bottom border

3 Bottom blanking

3 Vertical blanking

13 Top blanking

38 Top border

V counter values 00-FF, 00-02, CA-FF

PAL 256x240

Lines Description

240 Active display

24 Bottom border

3 Bottom blanking

3 Vertical blanking

13 Top blanking

30 Top border

V counter values 00-FF, 00-0A, D2-FF

Here are some details about what the different screen areas look like, useful if you are

emulating overscan or if you want to have a 'virtual' vertical hold control in your

emulator.

Active display Where the display generated by the VDP goes

Bottom border Filled with border color from VDP register #7

Bottom blanking Filled with a light black color. (like display was

blanked)

Vertical sync Filled with a pure black color. (like display was turned

off)

Top blanking Filled with a light black color. (like display was

blanked)

Top border Filled with the border color from VDP register #7

H counter

Additional information on the horizontal aspects of the display. From the TMS9918

manual and tests.

 32

The H counter is 9 bits, and reading it returns the upper 8 bits. This is because a scanline

consists of 342 pixels, which couldn't be represented with an 8-bit counter. Each scanline

is divided up as follows:

Pixels H counter Description

256 00-7F Active display

15 80-87 Right border

8 87-8B Right blanking

26 8B-ED Horizontal sync

2 ED-EE Left blanking

14 EE-F5 Color burst

8 F5-F9 Left blanking

13 F9-FF Left border

Here's a description of what these areas look like:

Active display Where the display generated by the VDP goes

Right border Filled with border color from VDP register $07

Right blanking Filled with a light black color. (like display was

blanked)

Horizontal sync Filled with a pure black color. (like display was turned

off)

Left blanking Filled with border color from VDP register $07

Color burst Filled with a dark brown/ orange color

Left blanking Filled with a light black color. (like display was

blanked)

Left border Filled with border color from VDP register $07

Currently we don't have information about where events occur within a single scanline.

These events would include the following:

- When a line interrupt is generated.

- When a frame interrupt is generated.

- When the V counter is incremented.

Interrupts

The VDP can generate an interrupt relating to two conditions; when the vertical blanking

period has started (frame interrupt), and when the line interrupt counter has expired

(line interrupt).

 33

Frame interrupts

Depending on the height of the display, the VDP will attempt to generate a frame

interrupt on the following lines:

Height Line

192 $C1

224 $E1

240 $F1

On the line in question, the VDP will set bit 7 of the status flags. This bit will remain set

until the control port is read.

Bit 5 of register $01 acts like a on/off switch for the VDP's IRQ line. As long as bit 7 of

the status flags is set, the VDP will assert the IRQ line if bit 5 of register $01 is set, and it

will de-assert the IRQ line if the same bit is cleared.

Line interrupts

The VDP has a counter that is loaded with the contents of register $0A on every line

outside of the active display period excluding the line after the last line of the active

display period. It is decremented on every line within the active display period including

the line after the last line of the active display period.

To help you understand how this works, here is an example for a 192-line display on an

NTSC machine that has 262 scanlines per frame:

Out of lines 0-261:

 The counter is decremented on lines 0-191 and 192

 The counter is reloaded on lines 193-261

When the counter underflows from $00 to $FF, it is reloaded with the last value written

to register $0A. Writing to register $0A will not immediately change the contents of the

counter, this only occurs when the counter is reloaded (meaning outside of the active

display period as described above, or when the counter has underflows).

When the counter underflows, the VDP sets an internal flag which I will call the line

interrupt pending flag. This flag remains set until the control port is read.

Bit 4 of register $00 acts like a on/off switch for the VDP's IRQ line. As long as the line

interrupt pending flag is set, the VDP will assert the IRQ line if bit 4 of register $00 is set,

and it will de-assert the IRQ line if the same bit is cleared.

 34

Miscellaneous

When writing to CRAM rapidly during the active display, we found that sometimes data is

written to the wrong address or that the data isn't written altogether. We think the cause

is that the VDP can only allow so many CPU accesses to VRAM and CRAM during a

scanline, and if you write when the VDP is busy processing a previous write, the data is

simply gone. I assume for mode 4 the VDP's faster clock rate allows it to give more time

to the Z80.

Bit 3 of register $00 (early clock) also affects sprites in the TMS9918 modes, by the

same amount of 8 pixels.

In Sean Young's TMS9918 document, he describes a problem where the unused bits in

some VDP registers that define a table address work like an AND mask over the high

order address bits of a pattern index. This is the exact same problem that causes the

name table mirroring as described in the register reference section. Note that this does

not occur in 315-5246, the unused bits of any register will not change the address the

VDP forms, in mode 4 or any of the TMS9918 modes.

 35

Programmable Sound Generator documentation

The following pages describe the SN76489 Programmable Sound Generator that is build

in the Sega processor used in Franky.

Accessing the SN76489 from software

The SN76489 has an 8-bit write-only data bus, so it is controlled in software by writing

bytes to it. How this is done depends on the system.

The SN76489 can be accessed by writing to I/O port 0x49.

SN76489 registers

The SN76489 has 8 "registers" - 4 volume registers with each 4 bits, 3 tone registers

consisting of 10 bits and a noise register of 3 bits wide. Of course, for hardware reasons

these may internally be wider.

The difference between registers is determined by the highest 4 bits:

 SMS PSG

 7 6 5 4 3 2 1 0

Byte 0 1 0 0 0

Tune tone A

fine

Byte 1 0 0

Tune tone A

coarse

Byte 2 1 0 1 0

Tune tone B

fine

Byte 3 0 0

Tune tone B

coarse

Byte 4 1 1 0 0

Tune tone C

fine

Byte 5 0 0

Tune tone C

coarse

Byte 6 1 0 0 1 Volume A

Byte 7 1 0 1 1 Volume B

Byte 8 1 1 0 1 Volume C

Byte 9 1 1 1 0 0 Noise

Byte

10 1 1 1 1 Noise vol

Frequency A: 1000XXXX 00XXXXXX

Frequency B: 1010XXXX 00XXXXXX

Frequency C: 1100XXXX 00XXXXXX

Volume A: 1001XXXX

 36

Volume B: 1011XXXX

Volume C: 1101XXXX

Noise: 11100XXX

Noise vol.: 1111XXXX

Volume registers

The value represents the attenuation of the output. %0000 is full volume and %1111 is

silence. The number is inverted compared to the MSX PSG.

Tone registers

Writing to the 10 bits tone register must be done in two cycles. For setting the desired

frequency for tone A, first write 1000XXXX to I/O address &H49 with the 4 lowest bits in

X, then write 00XXXXXX where X are the 6 highest bits for the tone.

These 10 bits are calculated as follows:

X = (3579545 / 32) / Desired frequency

The CPU clock is internally divided by 32, compared to the MSX PSG the highest 2 bits of

the tone are not available. The lowest frequency the SMS PSG can make is 109Hz with all

10 bits high.

Noise register

Bit 2 selects the mode "periodic" or "white". The lowest 2 bits of the noise register

determines the frequency:

00 = Clock/512

01 = Clock/1024

10 = Clock/2048

11 = Output frequency of tone 3 (byte 4 and 5 in example)

In this case the clock is the 3.579545MHz input.

 37

Example program

This program generates a tone on both MSX VDP and SMS VDP:

10 INPUT "Frequentie in Hz";F

15 FR=INT((3579545#/32)/F)

20 OUT &HA0,0:OUT &HA1,FR AND 255

30 OUT &HA0,1:OUT &HA1,FR\256

40 OUT &HA0,8:OUT &HA1,9:’Volume PSG

50 OUT &H49,&H80+(FR AND 15)

60 OUT &H49,(FR\16) AND 63

70 OUT &H49,&H90:’Volume A max

80 OUT &H49,&HBF:’Volume B off

90 OUT &H49,&HDF:’Volume C off

SN76489 register writes

When a byte is written to the SN76489, it processes it as follows:

If bit 7 is 1 then the byte is a LATCH/DATA byte.

Bits 6 and 5 (cc) give the channel to be latched, ALWAYS. This selects the row in the

above table - %00 is channel 0, %01 is channel 1, %10 is channel 2, %11 is channel 3

as you might expect.

Bit 4 (t) determines whether to latch volume (1) or tone/noise (0) data - this gives the

column.

The remaining 4 bits (dddd) are placed into the low 4 bits of the relevant register. For

the three-bit noise register, the highest bit is discarded.

The latched register is NEVER cleared by a data byte.

If bit 7 is 0 then the byte is a DATA byte.

 %1cctdddd

 |||````-- Data

 ||`------ Type

 ``------- Channel

 %0-DDDDDD

 |``````-- Data

 `-------- Unused

 38

If the currently latched register is a tone register then the low 6 bits of the byte

(DDDDDD) are placed into the high 6 bits of the latched register. If the latched register is

less than 6 bits wide (ie. not one of the tone registers), instead the low bits are placed

into the corresponding bits of the register, and any extra high bits are discarded.

The data have the following meanings (described more fully later):

Tone registers: ddddDDDDDD = cccccccccc

ddddDDDDDD gives the 10-bit half-wave counter reset value.

Volume registers: dddd(DDDDDD) = vvvv(--vvvv)

dddd gives the 4-bit volume value.

If a data byte is written, the low 4 bits of DDDDDD update the 4-bit volume value.

However, this is unnecessary.

Noise register: dddd(DDDDDD) = -trr(---trr)

The low 2 bits of dddd select the shift rate and the next highest bit (bit 2) selects the

mode (white (1) or "periodic" (0)).

If a data byte is written, its low 3 bits update the shift rate and mode in the same way.

This means that the following data will have the following effect (spacing added for

clarity, hopefully):

Set channel 0 tone to %0011111110 = 0xfe (440Hz @ 3579545Hz clock)

Set channel 1 volume to %1111 = 0xf (silent)

Set channel 2 volume to %1111 = 0xf (silent) THEN update it to %0000 = 0x0 (full) The

data byte is NOT ignored.

 %1 00 0 1110 Latch, channel 0, tone, data %1110

 %0 0 001111 Data %001111

%1 01 1 1111 Latch, channel 1, volume, data %1111

 %1 10 1 1111 Latch, channel 2, volume, data %1111

 %0 0 000000 Data %000000

 %1 11 0 0101 Latch, channel 3, noise, data %0101

 39

Set noise register to %101 (white noise, medium shift rate)

Set noise register to %101 (white noise, medium shift rate) THEN update it to %100

(white noise, high shift rate) The data byte is NOT ignored.

Numbers 1, 2 and 4 above are the same as is described in the various existing docs.

Number 3 IS USED - when pausing between text boxes in SMS Alex Kidd in Miracle

World, it is used to silence the sound. Emulators not supporting this output a constant

tone instead.

Number 5 IS USED by some SMS Codemasters games (Micro Machines, Excellent Dizzy,

possibly others). They were written without official documentation so they always latch

the noise channel with the data bits set to 0, which gives high shift rate "periodic noise",

and write the wanted settings as a data byte. Emulators which then ignore the data byte

will produce the "periodic noise" which sounds like a high-pitched "eek" instead of a drum

beat.

Many games also produce the above two unusual behaviours but not repeatedly (often

when a SFX is first played, for example).

Also of note is that the tone registers update immediately when a byte is written; they do

not wait until all 10 bits are written.

- signifies an unknown bit (whatever was previously in the register)

How the SN76489 makes sound

The SN76489 is connected to a clock signal, which is 3579545Hz for NTSC systems and

3546893Hz for PAL systems (these are based on the associated TV colour subcarrier

frequencies, and are common master clock speeds for many systems). It divides this

clock by 16 to get its internal clock. The datasheets specify a maximum of 4MHz.

 %1 11 0 0101 Latch, channel 3, noise, data %0101

 %0 0 000100 Data %000100

Data written Tone0 contents

1 00 0 0000 ------0000

0 0 000000 0000000000

1 00 0 1111 0000001111

0 0 111111 1111111111

 40

Some versions (specified as the SN76489N in the datasheets) instead have a divider of 2

and a maximum clock of 500kHz, giving an equivalent post-divide clock rate.

For each channel (all 4) there is a 10 bit counter, and an output bit. Each clock cycle, the

counter is decremented (if it is non-zero). If, after being decremented, it is zero, the

following happens:

Tone channels

The counter is reset to the value currently in the corresponding register (eg. Tone0 for

channel 0). The output bit is flipped - if it is currently outputting 1, it changes to 0, and

vice versa. This output is passed to the mixer (see below). The initial output value may

be arbitrarily set.

So, it produces a square wave output with wavelength twice the value in the

corresponding register (measured in clock ticks). The frequency of this can be calculated

by

Example values for an NTSC-clocked chip are given and are generally assumed

throughout. Thus, for example, 0x0fe gives 440.4Hz.

If the register value is zero or one then the output is a constant value of +1. This is often

used for sample playback on the SN76489.

Tone range

The lowest possible tone, using register value $3ff, is 109Hz (assuming an input clock of

3579545Hz), which corresponds to MIDI note A2 -10 cents.

The highest possible tone, using register value $001, is 111861Hz, which corresponds to

MIDI note D10 -14 cents. However, in practice, smoothing capacitors and other, perhaps

less deliberate, imperfections in the output mean that such a high note is not audible; in

tests on an SMS2, the highest note that gave any audible output was register value

$006, giving frequency 18643Hz (MIDI note A12 -12 cents). Thus, there is effectively a

range of 10 octaves.

Noise channel

The counter is reset according to the low 2 bits of the noise register as follows:

 Input clock (Hz) (3579545)

 Frequency (Hz) = ----------------------------------

 2 x register value x divider (16)

 41

Low 2 bits of register Value counter is reset to

00 0x10

01 0x20

10 0x40

11 Tone2

As with the tone channels, the output bit is toggled between 0 and 1. However, this is

not sent to the mixer, but to a "linear feedback shift register" (LFSR), which can generate

noise or act as a divider.

The Linear Feedback Shift Register

The LFSR is an array of either 15 or 16 bits, depending on the chip version; a 16-bit

version can give the same output as a 15-bit one with adjustment of parameters.

When its input changes from 0 to 1 (ie. only once for every two times the related counter

reaches zero), the array is shifted by one bit; the direction doesn't matter, it just

changes what numbers you use, so I will arbitrarily say it shifts right. The bit that is

shifted off the end (either 0 or 1) is output to the mixer.

The input bit is determined by an XOR feedback network. There are two types: an

external network, where the XOR gates are external to the shift register, and internal,

where they are between bits. Both are discussed below. Certain bits are used as inputs to

the XOR gates; these are the "tapped" bits. An n-bit shift register can generate pseudo-

random sequences with periodicity up to 2n - 1, depending on the tapped bits.

The external Linear Feedback Shift Register

For white noise (Noise register bit 2 = 1):

For the SMS (1 and 2) and Franky, the tapped bits are bits 0 and 3 ($0009), fed back

into bit 15.

For "periodic noise" (Noise register bit 2 = 0):

For all variants, only bit 0 is tapped, ie. the output bit is also the input bit. The effect of

this is to output the contents of the shift register in loop of the same length (16 bits for

the SMS/ Franky (1 and 2), Genesis and Game Gear

When the noise register is written to, the shift register is reset, such that all bits are zero

except for the highest bit. This will make the "periodic noise" output a 1/16th (or 1/15th)

duty cycle, and is important as it also affects the sound of white noise.

 42

Thus, the output in "periodic noise" mode will also be at a fraction of the frequency of the

underlying driving signal (discussed above). For a 16-bit shift register and a 3759545Hz

input clock, this gives "periodic noise" a frequency range of 6.8Hz to 6991Hz (when using

tone channel 2 as the driving signal, with register values $3ff and $001 respectively), a

range of 10 octaves (MIDI notes A-2 to A8), shifted 4 octaves down from the regular

tone range.

 Note that this "periodic noise", as it is called in the original chip's documentation, is in

fact not periodic noise as it is defined elsewhere (white noise with a configurable

periodicity); it is a duty cycle modifier. For this reason, throughout this document it is

always referred to with quotes.

Volume/attenuation

The mixer then multiplies each channel's output by the corresponding volume (or,

equivalently, applies the corresponding attenuation), and sums them. The result is

output to an amplifier which outputs them at suitable levels for audio.

The SN76489 attenuates the volume by 2dB for each step in the volume register. This is

almost completely meaningless to most people, so here's an explanation.

The decibel scale is a logarithmic comparative scale of power. One bel is defined as

Whether it's positive or negative depends on which way around you put power 1 and

power 2. The log is to base 10.

However, this tends to give values that are small and fiddly to deal with, so the standard

is to quote values as decibels (1 decibel = 10 bels). Thus,

One decibel is just above the threshold at which most people will notice a change in

volume.

 power 1

 log -------

 power 2

 power 1

 decibels = 10 log -------

 power 2

 43

In most cases we are not dealing with power, we are instead dealing with voltages in the

form of the output voltage being used to drive a speaker. You may remember from

school that power is proportional to the square of the voltage. Thus, applying a little

mathematical knowledge:

Rearranging:

Thus, a drop of 2dB will correspond to a ratio of 10-0.1 = 0.79432823 between the

current and previous output values. This can be used to build an output table, for

example:

These correspond to volume register values 0x0 to 0xf, in that order.

The last value is fixed to zero, regardless of what the previous value was, to allow silence

to be output.

Depending on later hardware in the chain between the SN76489 and your ears, there

may be some distortion introduced. My tests with an SMS and a TV card found the

highest three volume levels to be clipped, for example.

The imperfect SN76489

Real components aren't perfect. The output of the SN76489 in its various

implementations can be severely affected by this.

Wherever a voltage (output) is artificially held away from zero, there will be leakage and

the actual output will decay towards zero at a rate proportional to the offset from zero:

 (voltage 1)2 voltage 1

 decibels = 10 log ------------ = 20 log ---------

 (voltage 2)2 voltage 2

 voltage 1 (decibels / 20)

 --------- = 10

 voltage 2

 int volume_table[16]={

 32767, 26028, 20675, 16422, 13045, 10362, 8231, 6568,

 5193, 4125, 3277, 2603, 2067, 1642, 1304, 0

 };

 dV

 -- = -kV

 dt

 44

where k is a constant

This affects the output from the SN76489 both internally (for the outputs from the wave

generators to the mixer) and externally (for the output of the mixer).

If the tone register value is large enough, they will decay close to zero.

If the tone register value is zero, the constant offset output will just decay to zero.

However, whenever the volume of the output is changed, the constant offset is restored.

This allows speech effects.

Playing samples on the PSG

This is for the reference of those wishing to put sample playback in their demos, and for

those whose sound core doesn't do voices. Emulator authors may wish to add

implementation suggestions.

Sample playback is possible on the PSG (SN76489) but not the YM2413 FM chip.

It is possible to play samples in two ways:

Pulse Code Modulation

This is the usual way to store, process and output waves. The data is in the form of

voltages (corresponding to the desired speaker position which in turn gives

corresponding pressure waves in the air) which are stored digitally, often as 16-bit or 8-

bit signed numbers.

On the SN76489, this is *usually* done by:

Setting all 3 tone channels to frequency 0x000

At rapid, closely timed intervals, setting the output volume of all 3 to values stored in

ROM.

In other words, the volume setting is used as a 4-bit DAC. All three tone channels are

usually used together to get maximum volume.

The problem is that the output levels of the SN76489 are not linearly scaled:

 45

The source wave could be prepared with this in mind, using some specialised software.

However, ignoring this and outputting "normal" linear 4-bit data will generally sound

good, but significantly quieter than it would be on a linear scale.

The quality depends on the rate at which data is sent to the chip; on most systems, the

limit is more likely to be memory space than CPU speed (8kHz 4-bit audio will fit 4.1

seconds into 16KB).

Advanced PCM

Instead of setting the volumes on all three tone channels in unison, it is possible to

instead set the levels on all three independently. In theory this allows for 816 unique

output levels, although they are not distributed regularly or linearly, and are

concentrated in the lower half of the waveform; this is equivalent to about 9.7 bits of

resolution (but "costs" 12 bits per sample for storage).

If only two channels are used (so the source can be 8 bits per sample rather than 12, to

save ROM space), 136 unique levels are possible (7.1 bits of resolution), which seems to

be a better trade-off. By outputting 4 bits to two channels and the other 4 bits to the

third, the volume range for this 8-bit variation can be boosted at the expense of the

uniformity of coverage.

No known software uses this technique.

Pulse Width Modulation

This works by outputting pulses at constant volume whose pattern gives the effect of

different frequencies and volumes. This is also how samples are played on PC internal

speakers and some CD players. On the SN76489, this is done by:

Setting all 3 tone channels to frequency 0x000

At rapid, closely timed intervals, setting the output volume of all 3 to either 0xf (off) or

0x0 (full) depending on values stored in ROM.

All three channels are used to get maximum volume.

This is equivalent to dithering the sound to one bit per sample instead of however many

bits per sample are in the input data. Thus, an 8kHz 8-bit sample can be output as a

64kHz 1-bit sample and it will sound much the same. It is somewhat dependent on the

output frequency being above the range of hearing.

 | | | | | | | | | | | | | | | |Linear

 | ||||| | | | | | | | | | |SN76489

 46

The advantage of this is that it allows for a sample based on a linear PCM scale to be

output accurately on the SN76489 (allowing for louder sounds) and it can potentially

output any bitdepth source audio. The disadvantage is that, with a limited output rate,

one is forced to trade off between the bitdepth and sampling rate of the input sample:

with a maximum output rate of 20kHz, for example, one may choose a 6.67kHz 3-bit

source sample, a 5kHz 4-bit source sample, etc. This can be severely limiting for the

quality. (Note: the output limit, 20kHz in this example, has yet to be determined for the

SMS and will vary depending on how the data is encoded and the playback efficiency.)

On the Master System, PWM is not very good quality (often the sound is unintelligible, for

example Alex Kidd: the Lost Stars' "Find/I'm the Miracle Ball" and Shooting Gallery's

"Perfect"), but it is the loudest way to play samples.

